Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:23
  • preuzimanja u poslednjih 30 dana:8

Sadržaj

članak: 5 od 31  
Back povratak na rezultate
2020, vol. 70, br. 3, str. 142-156
Hemometrijski prozor ka antibakterijskoj aktivnosti biomolekula izolovanih iz endofitnih gljiva
Univerzitet u Beogradu, Farmaceutski fakultet, Institut za opštu i neorgansku hemiju, Srbija

e-adresabiljana.otasevic@pharmacy.bg.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Farmaceutski fakultet) (MPNTR - 451-03-68/2020-14/200161)

Ključne reči: bakterijska rezistencija; endofitne gljive; analiza glavnih komponenata; razvoj novih antibiotskih lekova
Sažetak
Rezistencija na lekove, posebno rezistencija bakterija na delovanje antibiotika, smatra se globalnim problemom. Na polju razvoja novih lekova nedavno su se pojavile endofitne gljive zahvaljujući sposobnosti da proizvedu sekundarne metabolite sa širokim spektrom različitih bioloških aktivnosti. Biosinteza ovih jedinjenja je pod velikim uticajem brojnih faktora koji se vezuju za izbor biljke domaćina, klimatske uslove, ishranu, prisustvo drugih mikroorganizama u istom okruženju itd. Pošto je u literaturi primećen veliki broj različitih indikatora antibakterijske aktivnosti endofitnih gljiva, izvršena je njihova kritička procena korišćenjem analitičkih metoda pretrage podataka. Razmatrana je aktivnost prema nekoliko sojeva patogenih bakterija koje su pokazale endofitne gljive koje rastu na različitim biljkama domaćinima, listopadnom drveću i zeljastim biljkama širom sveta i u različitim klimatskim uslovima, kao i taksonomska rasprostranjenost vrsta endofitnih gljiva. Istraživanje velike grupe podataka je vršeno pomoću analize glavnih komponenata (eng. Principal component analysis) sa ciljem pronalaženja obrazaca u podacima koji bi ukazali na manji broj pravih kandidata za dalji razvoj lekova. Osvetljen je antimikrobni karakter Phomopsis vrsta, a takođe su procenjeni i budući pravci u njegovoj terapijskoj primeni.
Reference
Arnold, A.E., Mejia, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N., Herre, E.A. (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649-15654
Corrado, M., Rodrigues, K.F. (2004) Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. Journal of Basic Microbiology, 44(2), 157-160
Deng, Z., Cao, L. (2017) Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, 168, 1100-1106
Diogo, E.L.F., Santos, J.M., Phillips, A.J.L. (2010) Phylogeny, morphology and pathogenicity of diaporthe and Phomopsis species on almond in Portugal. Fungal Diversity, 44(1), 107-115
Doty, S.L. (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist, 179(2), 318-333
Farr, D.F., Castlebury, L.A., Rossman, A.Y. (2002) Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the Eastern United States. Mycologia, 94(3), 494-504
Hunek, K.K., Heberberger, K. (2013) Method and model comparison by sum of ranking differences in cases of repeated observations (ties). Chemometr. Intell. Lab. Syst, 127, 139-146
Hussain, H., Tchimene, M.K., Ahmed, I., Meier, K.I., Steinert, M., Draeger, S., Schulz, B., Krohn, K. (2011) Antimicrobial chemical constituents from the endophytic fungus phomopsis sp. from Notobasis syriaca. Natural Product Communications, 6, 1905-1906
Ignjatović, J., Maljurić, N., Golubović, J., Ravnikar, M., Petković, M., Savodnik, N., Štrukelj, B., Otašević, B. (2020) Characterization of biomolecules with antibiotic activity from endophytic fungi Phomopsis species. Acta Chimica Slovenica, 67, 5389
Isaka, M., Jaturapat, A., Rukseree, K., Danwisetkanjana, K., Tanticharoen, M., Thebtaranonth, Y. (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. Journal of Natural Products, 64(8), 1015-1018
Jayanthi, G., Kamalraj, S., Karthikeyan, K., Muthumary, J. (2011) Antimicrobial and antioxidant activity of the endophytic fungus Phomopsis sp. GJJM07 isolated from Mesua ferrea. Int. J. Curr. Sci, 1, 85-90
Joliffe, T. (1986) Principal components analysis. New York: Springer
Kusari, S., Hertweck, C., Spiteller, M. (2012) Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology, 19(7), 792-798
Martinez-Klimova, E., Rodríguez-Peña, K., Sánchez, S. (2017) Endophytes as sources of antibiotics. Biochemical Pharmacology, 134, 1-17
Mutihac, L., Mutihac, R. (2008) Mining in chemometrics. Analytica Chimica Acta, 612(1), 1-18
Nisa, H., Kamili, A.N., Nawchoo, I.A., Shafi, S., Shameem, N., Bandh, S.A. (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microbial Pathogenesis, 82, 50-59
Radić, N., Štrukelj, B. (2012) Endophytic fungi: The treasure chest of antibacterial substances. Phytomedicine, 19(14), 1270-1284
Rakshith, D., Santosh, P., Satish, S. (2013) Isolation and characterization of antimicrobial metaboliteproducing endophytic Phomopsis sp. From Fisus pumila Linn. International Journal of Chemical and Analytical Science, 4(3), 156-160
Ravnikar, M., Tercelj, M., Janeš, D., Štrukelj, B., Kreft, S. (2015) Antibacterial activity of endophytic fungi isolated from conifer needles. Afr. J. Biotech, 14, 867-871
Rukachaisirikul, V., Sommart, U., Phongpaichit, S., Sakayaroj, J., Kirtikara, K. (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 69(3), 783-787
Ryan, R.P., Germaine, K., Franks, A.K., Ryan, D.J., Dowling, D.N. (2008) Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278(1), 1-9
Schulz, B., Boyle, C., Draeger, S., Römmert, A.K., Krohn, K. (2002) Endophytic fungi: A source of novel biologically active secondary metabolites. Mycological Research, 106(9), 996-1004
Shin, E.C., Craft, B.D., Pegg, R.B., Phillips, D.R., Eitenmiller, R.R. (2010) Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chemistry, 119(3), 1262-1270
Strobel, G.A. (2003) Endophytes as sources of bioactive products. Microbes and Infection, 5(6), 535-544
Tan, R.X., Zou, W.X. (2001) Endophytes: A rich source of functional metabolites. Natural Product Reports, 18(4), 448-459
Udayanga, D., Liu, X., McKenzie, E.H.C., Chukeatirote, E., Bahkali, A.H.A., Hyde, K.D. (2011) The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Diversity, 50(1), 189-225
Wink, M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3-19
Wold, S. (1987) Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52
Yenn, T.W., Lee, C.C., Ibrahim, D., Zakaria, L. (2012) Enhancement of anti-candidal activity of endophytic fungus Phomopsis sp. ED2, isolated from Orthosiphon stamineus Benth, by incorporation of host plant extract in culture medium. Journal of Microbiology, 50(4), 581-585
Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P., Qin, L. (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 165(6), 437-449
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/arhfarm2003142O
objavljen u SCIndeksu: 13.07.2020.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka