• citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:4
  • full-text downloads in 30 days:2


article: 3 from 3  
Back back to result list
2014, vol. 65, iss. 2, pp. 56-63
Antifungal activity of Pseudomonas chlororaphis Q16 against Sclerotinia sclerotiorum isolated from different medicinal plants
aMilitary Medical Academy, Institute of Epidemiology, Belgrade, Serbia
bInstitute for Plant Protection and Environment, Belgrade, Serbia
cInstitute of Soil Sciences, Belgrade, Serbia
New indigenous bacterial isolates Lysobacter and Pseudomonas as an important source of metabolites useful for biotechnology, plant growth stimulation and disease control: from isolates to inoculants (MESTD - 46007)

Phytopathogenic fungi Sclerotinia sclerotiorum is very destructive pathogen of the stem of many medicinal plants. Because the use of pesticides is forbidden during production of medicinal plants, presence of S. sclerotiorum may produce serious loss. The use of PGP (Plant Growth Promoting) bacteria, for which have been demonstrated to show antifungal activity with varying degrees of antagonism, gives protection to medicinal plants. The antifungal activity of different fractions of P. chlororaphis Q16 culture was examined on 6 representative isolates of S. sclerotiorum from medicinal plants: nettle, cumin, marshmallow, valerian and two strains of Echinacea. The highest efficacy of mycelial growth inhibition showed heat stabile antifungal factor with growth inhibition range from 52.75% (marshmallow isolate) up to 83.36% (isolate from E. purpurea). The inhibition of mycelial growth was similar for all S. sclerotiorum isolates when 24h culture was performed and ranged from 60.28% (cumin isolates) to 76.47% (nettle isolates).
Chin-A-Woeng, T.F., van den Broek, D., de Voer, G., van der Drift, K.M., Tuinman, S., Thomas-Oates, J.E., Lugtenberg, B.J., Bloemberg, G.V. (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Molecular plant-microbe interactions, 14(8): 969-79
Clarke, P.H. (1982) The metabolic versatility of pseudomonads. Antonie van Leeuwenhoek, 48(2): 105-130
Dilantha, F.W.G., Nakkeeran, S., Zhang, Y., Savchuk, S. (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 26, 100-107
Gamliel, A., Katan, T., Yunis, H., Katan, J. (1996) Fusarium Wilt and Crown Rot of Sweet Basil: Involvement of Soilborne and Airborne Inoculum. Phytopathology, 86(1): 56
Godoy, G., Steadman, J.R., Yuen, G. (1990) Bean blossom bacteria have potential for biological control of wite mold disease cauded by Sclerotinia sclerotiorum. Annu. Rep. Bean. Improv. Coop., 33, 45-46
Haas, D., Défago, G. (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature reviews. Microbiology, 3(4): 307-19
Huang, H.C., Kokko, E.G., Yanke, L.J., Phillippe, R.C. (1993) Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum. Canadian Journal of Microbiology, 39(2): 227-233
Jošić, D., Pavlović, S., Starović, M., Stojanović, S., Stanojković-Sebić, A., Pivić, R. (2012) Biocontrol of Alternaria tenuissima originated from Ocimum basilicum L using indigenous Pseudomonas spp. Strains. in: 7th CMAPSEEC, 27th-31th May, Subotica, Sebia, Proceedings, 195-200
Jošić, D., Protolipac, K., Starović, M., Stojanović, S., Pavlović, S., Miladinović, M., Radović, S. (2012) Phenazines producing pseudomonas isolates decrease Alternaria tenuissima growth, pathogenicity and disease incidence on cardoon. Archives of Biological Sciences, vol. 64, br. 4, str. 1495-1503
Liu, H., He, Y., Jiang, H., Peng, H., Huang, X., Zhang, X., Thomashow, L.S., Xu, Y. (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Current microbiology, 54(4): 302-6
Liu, Y., Lu, S.-E., Baird, S.M., Qiao, J., Du, Y. (2014) Draft Genome Sequence of Pseudomonas chlororaphis YL-1, a Biocontrol Strain Suppressing Plant Microbial Pathogens. Genome Announcements, 2(1): e01225-13-e01225-13
Nair, C.B., Anith, K.N. (2009) Efficacy of acibenzolar-S-methyl and rhizobacteria for the management of foliar blight disease of amaranth. Journal of Tropical Agriculture, 47(1-2), 43-47
Ogbebor, N., Adekunle, A.T. (2005) Inhibition of conidial germination and mycelial growth of Corynespora cassiicola (Berk and Curt) of rubber (Hevea brasiliensis muell. Arg.) using extracts of some plants. Afr. J. Biotechnol, (4): 996-1000
Pavlović, S.Đ., Stojanović, S.D. (2001) First reports of occurrence Sclerotinia blight on marshmallow (Althea officinalis L) in Serbia. in: Meeting days of medicinal plants, (VII), Book of abstracts, Belgrade, str. 45
Poritsanos, N., Selin, C., Fernando, W.G.D., Nakkeeran, S., de Kievit, T.R. (2006) A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Canadian journal of microbiology, 52(12): 1177-88
Poštić, D., Starović, M., Popović, T., Bosnić, P., Stanojković-Sebić, A., Pivić, R., Jošić, D. (2013) Selection and RAPD analysis of Pseudomonas ssp. isolates able to improve biological viability of potato seed tubers. Genetika, vol. 45, br. 1, str. 237-249
Protolipac, K., Pavlović, S., Starović, M., Stojanović, S., Lepšanović, Z., Jošić, D. (2012) Antifungal activity of idigenous Pseudomonas isolates aganist Alternaria tenuissima isolated from Echinacea purpurea. in: 7th CMAPSEEC, 27th-31th May, 2012, Subotica, Sebia, Proceedings, pp. 187-191
Savchuk, S.C. (2002) Evaluation of biological control of Sclerotinia scleroiorum on Canola (Brassica napus) in the lab, in the greenhouse, and in the field. University of Manitoba, pp. 49-83, Msc. thesis
Savchuk, S., Dilantha, F.W.G. (2004) Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS microbiology ecology, 49(3): 379-88
Selin, C., Habibian, R., Poritsanos, N., Athukorala, S.N.P., Fernando, D., de Kievit, T.R. (2010) Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotium, but do play a role in biofilm formation. FEMS Microbiology Ecology, 71(1): 73-83
Singh, A., Dubey, N.K. (2012) An ethnobotanical study of medicinal plants in Sonebhadra District of Uttar, Pradesh, India with reference to their infection by foliar fungi. Journal of Medicinal Plants Research, 6 (14): 2727-2746
Sokal, R.R., Rohlf, F.J. (1995) Biometry: The principles and practices of statistics in biological research. New York: W.H. Freeman and Company
Stojanović, S., Pavlović, S., Starović, M. (2006) Medicinal and aromatic plant decay caused by Sclerotinia sclerotiorum in Serbia. in: Medicinal and Aromatic Plants of Southeast European Countries, 4th Conference, 28-31. 05., Isai, Romania, Proceedings, pp. 240-243
Szczeponek, A., Mazur, S. (2006) Occurrence of fungal diseases on lemon balm (Mellisa officinalis L.) and peppermint (Mentha piperita L.) in the region of Malopolska. Commun Agric Appl. Biol. Sci., 71,(3 Pt B), 1109-1118
Tu, J.C. (1997) Biological control of white mould in white bean using Trichoderma viride, Gliocladium roseum and Bacillus subtilis as protective foliar spray. in: Crop Protection, 49th International Symposium, Gent, Proceedings, 62, 979-986
Yuen, G.Y. (1994) Influences of antagonist population levels, blossom development stage, and canopy temperature on the inhibition of Sclerotinia sclerotiorum on dry edible bean by Erwinia herbicola. Phytopathology, 84(5): 495
Zhang, Y., Fernando, W.G.D., de Kievit, T.R., Berry, C., Daayf, F., Paulitz, T.C. (2006) Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Canadian journal of microbiology, 52(5): 476-81


article language: Serbian
document type: Scientific Paper
DOI: 10.5937/zasbilj1402056L
published in SCIndeks: 21/05/2015

Related records

No related records