Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:8
  • full-text downloads in 30 days:6

Contents

article: 2 from 86  
Back back to result list
2021, vol. 62, iss. 1, pp. 41-50
Detailed characterization of the Ti-O based thin films obtained by cathodic arc evaporation
aUniversity of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča + ALBOS d.o.o., Belgrade
bUniversity of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča + Universidade Nova de Lisboa, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Lisboa, Portugal
cUniversity of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča
dENEA, Laboratory of Innovative Devices (DTEFSD-DIN), Portici (NA), Italy
eSGL Carbon, Weisbaden, Germany
fSt. Cyril and Methodius University, Institute of Physics, Faculty for Natural Sciences and Mathematics, Skopje, Republic of North Macedonia + Plasma Doo, Skopje, Republic of North Macedonia

emailvukoman@vinca.rs
Project:
Chemical and structural designing of nanomaterials for application in medicine and tissue engineering (MESTD - 172026)
Functional, Functionalized and Advanced Nanomaterials (MESTD - 45005)
Portuguese National Funding Agency for Science, Research and Technology in the framework of the project UID/FIS/00068/2019

Keywords: titanium oxide thin films; XRD; FTIR; SEM; XPS; ellipsometry
Abstract
Physicochemical properties of thin films on the base of titanium oxides, obtained by a cathodic arc evaporation on the surface of glass substrate are analysed in details. The analysis of these films was made by using XRD, FTIR, SEM, XPS analysis and ellipsometry. On the basis of these analyses, particularly analysis obtained by XPS, the oxidative state Ti and corresponding phases are determined through various film layers from the surface to the substrate. The depth of the various levels and their extinction coefficients and refractory indexes are estimated by ellipsometry.
References
Abdel-Aziz, M.M., Yahia, I.S., Wahab, L.A., Fadel, M., Afifi, M.A. (2006) Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Applied Surface Science, 252: 8163-8170
An, S.M.M., Kumaresan, N., Ramamurthi, K., Sethuraman, K. (2019) Development of pure rutile TiO2TiO2 and Magneli titanium sub-oxide microstructures over titanium oxide-seeded glass substrates using surfactant-free hydrothermal process. Bull. Mater. Sci, 42(20): 127-136
Behrisch, R. (1983) Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neutron Sputtering, Surface Topography, book. book, 179-229
Bendavid, A., Martin, P.J. (2014) Review of thin film materials deposition by the filtered cathodic vacuum arc process at CSIRO. J.Aust.Ceram. Soc, 50: 86-101
Biesinger, M.C., Lau, L.W., Gerson, A.R., Smart, R.C. (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257: 887-898
Brydson, R., Sauer, H., Engel, W., Thomass, J.M., Zeitler, E., Kosugi, N., Kuroda, H. (1989) Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: A test of structural sensitivity. J. Phys.: Cond. Matter, 1(4): 131-139
Carp, O., Huisman, C.L., Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32: 33-177
de Groot, F.M.F., Grioni, M., Fuggle, J.C., Ghijsen, J., Sawatzky, G.A., Peters, H. (1989) Oxygen 1sx-ray-absorption edges of transition-metal oxides. Physical Review, 40: 5715-5723
Diebold, U. (2003) The surface science of titanium dioxide. Surface Science Reports, 48: 53-229
Eiamchai, P., Chindaudom, P., Pokaipisit, A., Limsuwan, P. (2009) A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation. Current Applied Physics, 9: 707-712
Fukushima, J., Takizawa, H. (2018) Size Control of Ti4O7 Nanoparticles by Carbothermal Reduction Using a Multimode Microwave Furnace. Crystals, 8: 444-452
Hashimoto, S., Tanaka, A. (2002) Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment. Surface and Interface Analysis, 34: 262-265
Jaeger, D., Patscheider, J. (2012) A complete and self-consistent evaluation of XPS spectra of TiN. Journal of Electron Spectroscopy and Related Phenomena, 185: 523-534
Jokanovic, V., Ferrara, M. (2020) Mendeley Data. 1
Jokanović, V., Čolović, B., Petkovska, A.T., Mraković, A., Jokanović, B., Nenadović, M., Ferrara, M., Nasov, I. (2017) Optical properties of titanium oxide films obtained by cathodic arc plasma deposition. Plasma Sci. Technol, 19: 125504-125513
Jokanović, V., Ĉolović, B., Jokanović, B., Stojadinović, S., Trajkovska, A.P., Nasov, I. (2016) Plasmonic metamaterials based on titanium oxides. Mater. Prot, in Serbian, 57: 225-231
Jokanović, V.R., Colovic, B., Nenadović, M., Trajkovska, P.A., Mitrić, M., Jokanovic, B., Nasov, I. (2016) Ultra-High and Near-Zero Refractive Indices of Magnetron Sputtered Thin-Film Metamaterials Based on TixOy. Adv. Mater. Sci. Eng, 33: 9-16
Leapman, R.D., Grunes, L.A., Fejes, P.L. (1982) Study of theL23edges in the3dtransition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Physical Review B, 26: 614-620
Lilja, M., Forsgren, J., Welch, K., Åstrand, M., Engqvist, H., Strømme, M. (2012) Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnology Letters, 34: 2299-2305
Lindgren, T., Mwabora, J.M., Avandaño, E., Jonsson, J., Hoel, A., Granqvist, C.G., Lindquist, S.E. (2003) Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering. J.Phys.Chem.B, 107: 5709-5716
Lončarić, M., Sancho-Parramon, J., Zorc, H. (2011) Optical properties of gold island films-a spectroscopic ellipsometry study. Thin Solid Films, 519(9): 2946-2950
Lu, G., Bernasek, S.L. (2000) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. J. Schwartz, Surf. Sci, 458: 887-898
Martin, P.J., Mckenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Müller, K.H., Pacey, C.G., James, B. (1987) Characteristics of titanium arc evaporation processes. Thin Solid Films, 153: 91-102
Möller, W., Eckstein, W., Biersack, J.P. (1988) Tridyn-binary collision simulation of atomic collisions and dynamic composition changes in solids. Computer Physics Communications, 51: 355-368
Möller, W., Posselt, M. (2002) TRIDYN_FZR User Manual. Dresden, Germany: Forschungszentrum
Oum, K., Lohse, P.W., Klein, J.R., Flender, O., Scholz, M., Hagfeldt, A., Boschloo, G., Lenzer, T. (2013) Photoinduced ultrafast dynamics of the triphenylamine-based organic sensitizer D35 on TiO2, ZrO2 and in acetonitrile. Phys. Chem. Chem. Phys, 15: 3906-3916
Patsalas, P., Kalfagiannis, N., Kassavetis, S. (2015) Optical Properties and Plasmonic Performance of Titanium Nitride. Materials, 8(6): 3128-3154
Podshivalova, A.K., Karpov, I.K. (2007) Thermodynamic analysis of the stability of titanium oxides in the TiO-TiO2 range. Russian Journal of Inorganic Chemistry, 52: 1147-1150
Popović, M., Potočnik, J., Bundaleski, N., Rakočević, Z. (2017) Instrumental function of the SPECS XPS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 398: 48-55
Ravindra, N.M., Ganapathy, P., Choi, J. (2007) Energy gap-refractive index relations in semiconductors: An overview. Infrared Physics & Technology, 50: 21-29
Razvan, I., Antoniac, V.I., Cotrut, M.C., Miculescu, F., Eugeniu, V., Munteanu, C., Moldan, D., Niculescu, M. (2014) Potential Solutions to Increase the Corrosion Resistance of Metallic Surgical Instruments Using Different Types of Ceramic Coatings. Key Eng. Mater, 614: 206-211
Sarkar, A., Khan, G.G. (2019) The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale, 11(8): 3414-3444
Seah, M.P., Nunney, T.S. (2010) Sputtering yields of compounds using argon ions. J. Phys. D. Appl. Phys, 43(25): 3001-3013
Song, X.F., Hu, L.F., Li, D.H., Chen, L., Sun, Q.Q., Zhou, P., Zhang, D.W. (2015) Electrical level of defects in single-layer two-dimensional TiO2. Scientific Reports, 5: 15989-15995
Trigueiro, J., Bundaleski, N., Teodoro, O.M. (2018) Monitoring dynamics of different processes on rutile TiO 2 (110) surface by following work function change. Vacuum, 152: 327-329
Vereschaka, A.A., Grigoriev, S.N., Vereschaka, A.S., Popov, A., Batako, A.D. (2014) Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions. Procedia CIRP, Elsevier, 239-244
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T. (1997) Light-induced amphiphilic surfaces. Nature, 388: 431-432
Wendt, S., Schaub, R., Matthiesen, J., Vestergaard, E.K., Wahlström, E., Rasmussen, M.D., Thostrup, P., Molina, L.M., Laegsgaard, E., Stensgaard, I., Hammer, B., Besenbacher, F. (2005) Oxygen vacancies on TiO2 (1 1 0) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci, 598: 226-245
Yoshiya, M., Tanaka, I., Kaneko, K., Adachi, H. (1999) First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides. Journal of Physics: Condensed Matter, 11(16): 3217-3225
Zhao, Z., Tay, B.K., Yu, G. (2004) Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique. Applied Optics, 43: 1281-1292
Zhu, J.Q., Johansson-Jöesaar, M.P., Polcik, P., Jensen, J., Greczynski, G., Hultman, L., Odén, M. (2013) Influence of Ti-Si cathode grain size on the cathodic arc process and resulting Ti-Si-N coatings. Surface and Coatings Technology, 235: 637-647
 

About

article language: English
document type: Scientific Paper
DOI: 10.5937/zasmat2101041J
received: 22/11/2020
accepted: 10/12/2020
published in SCIndeks: 13/03/2021
Creative Commons License 4.0

Related records

No related records