Metrika

  • citati u SCIndeksu: [2]
  • citati u CrossRef-u:[4]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 2 od 8  
Back povratak na rezultate
2021, vol. 49, br. 1, str. 64-71
Analiza performansi solarne dimnjačke elektrane za različite lokacije u Saudijskoj Arabiji
aKing Fahd University of Petroleum & Minerals, Department of Mechanical Engineering, Dhahran, Saudi Arabia
bKing Fahd University of Petroleum & Minerals, Research Institute, Center for Engineering Research, Dhahran, Saudi Arabia
cKing Fahd University of Petroleum & Minerals, Research Institute, Center of Research Excellence in Renewable Energy (CoRE-RE), Dhahran, Saudi Arabia

e-adresasrehman@kfupm.edu.sa
Projekat:
The authors would like to acknowledge the Deanship of Research, King Fahd University of Petroleum & Minerals for the financial support of this work under the project number IN141031

Ključne reči: Solar Chimney Power Plant (SCPP); Energy; Modelling; Saudi Arabia
Sažetak
Prikazuje se analiza performansi solarne dimnjačke elektrane korišćenjem energetskog modela elektrane. Razvijeni model je uporedno istražen za pet lokacija (gradova) u Saudijskoj Arabiji: Džubail (na istoku), Arar (na severu), Umluj (na zapadu), Šarurah (na jugu) i Šakra (u centralnoj Saudijskoj Arabiji). Solarno zračenje, časovi osunčanosti, ambijentalna temperatura i atmosferski pritisak su bili parametri za određivanje izlazne snage, energetske efikasnosti i ostalih elemenata performansi elektrane odabranih dimenzija. Analiza podataka je pokazala da da je godišnje prosečno solarno zračenje najveće u Šarurahu (551 W/m2), a najmanje u Džubailu (456 W/m2). Najvišu i najnižu prosečnu ambijentalnu temperaturu imali su Šarurah (303K) i Umluj (301K). Istraživanjem je utvrđeno da Džubail i Umluj imaju najveću godišnju prosečnu energetsku efikasnost. Izlazna snaga, energetska efikasnost, temperaturne varijacije vazduha i tla, pritisak na turbini i dimnjaku, varijacije u brzini masenog protoka i ulazna brzina turbine su prikazani za svaki mesec u godini za svih pet gradova.
Reference
Al-Kayiem, H.H., Aja, O.C. (2016) Historic and recent progress in solar chimney power plant enhancing technologies. Renewable and Sustainable Energy Reviews, 58: 1269-1292
Bashirnezhad, K., Kavyanpoor, M., Kebriyaee, S.A., Moosavi, A. (2018) The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material. Solar Energy, vol. 169, no. November 2017, pp. 411-423
Cao, F., Li, H., Zhao, L., Bao, T., Guo, L. (2013) Design and simulation of the solar chimney power plants with TRNSYS. Solar Energy, 98: 23-33
Ćoćić, A.S., Đorđević, V.D. (2016) One-dimensional analysis of compressible flow in solar chimney power plants. Solar Energy, 135: 810-820
Dehghani, S., Mohammadi, A.H. (2014) Optimum dimension of geometric parameters of solar chimney power plants: A multi-objective optimization approach. Solar Energy, 105: 603-612
Fluri, T.P., Pretorius, J.P., van Dyk, C., von Backström, T.W., Kröger, D.G., van Zijl, G.P.A.G. (2009) Cost analysis of solar chimney power plants. Solar Energy, 83(2): 246-256
Ghalamchi, M., Kasaeian, A., Ghalamchi, M. (2015) Experimental study of geometrical and climate effects on the performance of a small solar chimney. Renewable and Sustainable Energy Reviews, 43: 425-431
Guo, P., Zhai, Y., Xu, X., Li, J. (2017) Assessment of levelized cost of electricity for a 10-MW solar chimney power plant in Yinchuan China. Energy Conversion and Management, vol. 152, no. September, pp. 176-185
Haaf, W. (1984) Part II: Preliminary Test Results from the Manzanares Pilot Plant. Int. J. Sol. Energy, 2: 141-161
Habibollahzade, A., Houshfar, E., Ahmadi, P., Behzadi, A., Gholamian, E. (2018) Exergoeconomic assessment and multi-objective optimization of a solar chimney integrated with waste-to-energy. Solar Energy, vol. 176, no. April, pp. 30-41
Hussain, F.M., Al-Sulaiman, F.A. (2018) Performance analysis of a solar chimney power plant design aided with reflectors. Energy Conversion and Management, vol. 177, no. April, pp. 30-42
Kasaeian, A.B., Molana, S.H., Rahmani, K., Wen, D. (2017) A review on solar chimney systems. Renewable and Sustainable Energy Reviews, 67: 954-987
Khanal, R., Lei, C. (2014) An experimental investigation of an inclined passive wall solar chimney for natural ventilation. Solar Energy, 107: 461-474
Koonsrisuk, A. (2013) Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis. Solar Energy, 98: 78-84
Koonsrisuk, A., Chitsomboon, T. (2009) Partial geometric similarity for solar chimney power plant modeling. Solar Energy, 83(9): 1611-1618
Li, J., Guo, H., Huang, S. (2016) Power generation quality analysis and geometric optimization for solar chimney power plants. Solar Energy, 139: 228-237
Liu, B., Ma, X., Wang, X., Dang, C., Wang, Q., Bennacer, R. (2015) Experimental study of the chimney effect in a solar hybrid double wall. Solar Energy, 115: 1-9
Lorente, S., Koonsrisuk, A., Bejan, A. (2010) Constructal Distribution of Solar Chimney Power Plants: Few Large and Many Small. International Journal of Green Energy, 7(6): 577-592
Maia, C.B., Silva, F.V.M., Oliveira, V.L.C., Kazmerski, L.L. (2019) An overview of the use of solar chimneys for desalination. Solar Energy, vol. 183, no. December 2018, pp. 83-95
Monghasemi, N., Vadiee, A. (2018) A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, vol. 81, no. June, pp. 2714-2730
Muhammed, H.A., Atrooshi, S.A. (2019) Modeling solar chimney for geometry optimization. Renewable Energy, 138: 212-223
Petela, R. (2009) Thermodynamic study of a simplified model of the solar chimney power plant. Solar Energy, vol. 83, no. 1, pp. 94-107
Pretorius, J.P., Kroger, D.G. (2006) Solar chimney power plant performance. J. Sol. Energy Eng. Trans. ASME, vol. 128, no. 3, pp. 302-311
Sangi, R. (2012) Performance evaluation of solar chimney power plants in Iran. Renewable and Sustainable Energy Reviews, 16(1): 704-710
Schlaich, J. (1999) Tension structures for solar electricity generation. Engineering Structures, 21(8): 658-668
Shi, L., Zhang, G., Yang, W., Huang, D., Cheng, X., Setunge, S. (2018) Determining the influencing factors on the performance of solar chimney in buildings. Renewable and Sustainable Energy Reviews, vol. 88, no. September 2017, pp. 223-238
Tan, A.Y.K., Wong, N.H. (2014) Influences of ambient air speed and internal heat load on the performance of solar chimney in the tropics. Solar Energy, 102: 116-125
von Backström, T.W., Gannon, A.J. (2004) Solar chimney turbine characteristics. Solar Energy, 76(1-3): 235-241
Xu, Y., Zhou, X. (2018) Performance of divergent-chimney solar power plants. Solar Energy, vol. 170, no. October 2017, pp. 379-387
Zhai, X.Q., Song, Z.P., Wang, R.Z. (2011) A review for the applications of solar chimneys in buildings. Renewable and Sustainable Energy Reviews, 15(8): 3757-3767
Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F. (2009) Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering, 29(1): 178-185
Zhou, X., Xu, Y., Zhang, F. (2017) Evaluation of effect of diurnal ambient temperature range on solar chimney power plant performance. International Journal of Heat and Mass Transfer, 115: 398-405
Zhou, X., Xu, Y. (2016) Solar updraft tower power generation. Solar Energy, 128: 95-125
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2101064H
primljen: 15.07.2020.
prihvaćen: 15.10.2020.
objavljen u SCIndeksu: 20.12.2020.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka