- citati u SCIndeksu: [2]
- citati u CrossRef-u:[4]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:3
- preuzimanja u poslednjih 30 dana:2
|
|
2021, vol. 49, br. 1, str. 64-71
|
Analiza performansi solarne dimnjačke elektrane za različite lokacije u Saudijskoj Arabiji
Performance analysis of a solar chimney power plant for different geographical locations of Saudi Arabia
aKing Fahd University of Petroleum & Minerals, Department of Mechanical Engineering, Dhahran, Saudi Arabia bKing Fahd University of Petroleum & Minerals, Research Institute, Center for Engineering Research, Dhahran, Saudi Arabia cKing Fahd University of Petroleum & Minerals, Research Institute, Center of Research Excellence in Renewable Energy (CoRE-RE), Dhahran, Saudi Arabia
e-adresa: srehman@kfupm.edu.sa
Projekat: The authors would like to acknowledge the Deanship of Research, King Fahd University of Petroleum & Minerals for the financial support of this work under the project number IN141031
Sažetak
Prikazuje se analiza performansi solarne dimnjačke elektrane korišćenjem energetskog modela elektrane. Razvijeni model je uporedno istražen za pet lokacija (gradova) u Saudijskoj Arabiji: Džubail (na istoku), Arar (na severu), Umluj (na zapadu), Šarurah (na jugu) i Šakra (u centralnoj Saudijskoj Arabiji). Solarno zračenje, časovi osunčanosti, ambijentalna temperatura i atmosferski pritisak su bili parametri za određivanje izlazne snage, energetske efikasnosti i ostalih elemenata performansi elektrane odabranih dimenzija. Analiza podataka je pokazala da da je godišnje prosečno solarno zračenje najveće u Šarurahu (551 W/m2), a najmanje u Džubailu (456 W/m2). Najvišu i najnižu prosečnu ambijentalnu temperaturu imali su Šarurah (303K) i Umluj (301K). Istraživanjem je utvrđeno da Džubail i Umluj imaju najveću godišnju prosečnu energetsku efikasnost. Izlazna snaga, energetska efikasnost, temperaturne varijacije vazduha i tla, pritisak na turbini i dimnjaku, varijacije u brzini masenog protoka i ulazna brzina turbine su prikazani za svaki mesec u godini za svih pet gradova.
Abstract
In this study, a detailed performance analysis was conducted by analysing the energy model of solar chimney power plant. The developed model was used for five locations (cities) in Saudi Arabia for a comparative study. The selected cities were Jubail (East), Arar (North), Umluj (West), Sharurah (South) and Shaqra (Central). The solar irradiation, sunshine hours, ambient temperature and atmospheric pressure was used to determine the output power, efficiency, and other performance parameters for the chosen size of plant. The data analysis showed that the highest annual average solar irradiation was at Sharurah (551W/m2) and the lowest for Jubail (456W/m2). The highest and lowest average ambient temperatures were found at Sharurah (303K) and Umluj (301K). Study reveals that annual average efficiency for Jubail is highest followed by Umluj. Furthermore, the output power, energy efficiency, variation of floor and air temperatures and pressure across turbine and chimney, variation of the mass flow rate and, the turbine inlet velocity are reported for all the months during the year for the selected five cities of Saudi Arabia.
|
|
|
Reference
|
|
Al-Kayiem, H.H., Aja, O.C. (2016) Historic and recent progress in solar chimney power plant enhancing technologies. Renewable and Sustainable Energy Reviews, 58: 1269-1292
|
|
Bashirnezhad, K., Kavyanpoor, M., Kebriyaee, S.A., Moosavi, A. (2018) The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material. Solar Energy, vol. 169, no. November 2017, pp. 411-423
|
|
Cao, F., Li, H., Zhao, L., Bao, T., Guo, L. (2013) Design and simulation of the solar chimney power plants with TRNSYS. Solar Energy, 98: 23-33
|
|
Ćoćić, A.S., Đorđević, V.D. (2016) One-dimensional analysis of compressible flow in solar chimney power plants. Solar Energy, 135: 810-820
|
|
Dehghani, S., Mohammadi, A.H. (2014) Optimum dimension of geometric parameters of solar chimney power plants: A multi-objective optimization approach. Solar Energy, 105: 603-612
|
|
Fluri, T.P., Pretorius, J.P., van Dyk, C., von Backström, T.W., Kröger, D.G., van Zijl, G.P.A.G. (2009) Cost analysis of solar chimney power plants. Solar Energy, 83(2): 246-256
|
|
Ghalamchi, M., Kasaeian, A., Ghalamchi, M. (2015) Experimental study of geometrical and climate effects on the performance of a small solar chimney. Renewable and Sustainable Energy Reviews, 43: 425-431
|
|
Guo, P., Zhai, Y., Xu, X., Li, J. (2017) Assessment of levelized cost of electricity for a 10-MW solar chimney power plant in Yinchuan China. Energy Conversion and Management, vol. 152, no. September, pp. 176-185
|
|
Haaf, W. (1984) Part II: Preliminary Test Results from the Manzanares Pilot Plant. Int. J. Sol. Energy, 2: 141-161
|
|
Habibollahzade, A., Houshfar, E., Ahmadi, P., Behzadi, A., Gholamian, E. (2018) Exergoeconomic assessment and multi-objective optimization of a solar chimney integrated with waste-to-energy. Solar Energy, vol. 176, no. April, pp. 30-41
|
|
Hussain, F.M., Al-Sulaiman, F.A. (2018) Performance analysis of a solar chimney power plant design aided with reflectors. Energy Conversion and Management, vol. 177, no. April, pp. 30-42
|
|
Kasaeian, A.B., Molana, S.H., Rahmani, K., Wen, D. (2017) A review on solar chimney systems. Renewable and Sustainable Energy Reviews, 67: 954-987
|
|
Khanal, R., Lei, C. (2014) An experimental investigation of an inclined passive wall solar chimney for natural ventilation. Solar Energy, 107: 461-474
|
|
Koonsrisuk, A. (2013) Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis. Solar Energy, 98: 78-84
|
|
Koonsrisuk, A., Chitsomboon, T. (2009) Partial geometric similarity for solar chimney power plant modeling. Solar Energy, 83(9): 1611-1618
|
|
Li, J., Guo, H., Huang, S. (2016) Power generation quality analysis and geometric optimization for solar chimney power plants. Solar Energy, 139: 228-237
|
|
Liu, B., Ma, X., Wang, X., Dang, C., Wang, Q., Bennacer, R. (2015) Experimental study of the chimney effect in a solar hybrid double wall. Solar Energy, 115: 1-9
|
|
Lorente, S., Koonsrisuk, A., Bejan, A. (2010) Constructal Distribution of Solar Chimney Power Plants: Few Large and Many Small. International Journal of Green Energy, 7(6): 577-592
|
|
Maia, C.B., Silva, F.V.M., Oliveira, V.L.C., Kazmerski, L.L. (2019) An overview of the use of solar chimneys for desalination. Solar Energy, vol. 183, no. December 2018, pp. 83-95
|
|
Monghasemi, N., Vadiee, A. (2018) A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, vol. 81, no. June, pp. 2714-2730
|
|
Muhammed, H.A., Atrooshi, S.A. (2019) Modeling solar chimney for geometry optimization. Renewable Energy, 138: 212-223
|
|
Petela, R. (2009) Thermodynamic study of a simplified model of the solar chimney power plant. Solar Energy, vol. 83, no. 1, pp. 94-107
|
|
Pretorius, J.P., Kroger, D.G. (2006) Solar chimney power plant performance. J. Sol. Energy Eng. Trans. ASME, vol. 128, no. 3, pp. 302-311
|
|
Sangi, R. (2012) Performance evaluation of solar chimney power plants in Iran. Renewable and Sustainable Energy Reviews, 16(1): 704-710
|
|
Schlaich, J. (1999) Tension structures for solar electricity generation. Engineering Structures, 21(8): 658-668
|
|
Shi, L., Zhang, G., Yang, W., Huang, D., Cheng, X., Setunge, S. (2018) Determining the influencing factors on the performance of solar chimney in buildings. Renewable and Sustainable Energy Reviews, vol. 88, no. September 2017, pp. 223-238
|
|
Tan, A.Y.K., Wong, N.H. (2014) Influences of ambient air speed and internal heat load on the performance of solar chimney in the tropics. Solar Energy, 102: 116-125
|
|
von Backström, T.W., Gannon, A.J. (2004) Solar chimney turbine characteristics. Solar Energy, 76(1-3): 235-241
|
|
Xu, Y., Zhou, X. (2018) Performance of divergent-chimney solar power plants. Solar Energy, vol. 170, no. October 2017, pp. 379-387
|
|
Zhai, X.Q., Song, Z.P., Wang, R.Z. (2011) A review for the applications of solar chimneys in buildings. Renewable and Sustainable Energy Reviews, 15(8): 3757-3767
|
|
Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F. (2009) Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering, 29(1): 178-185
|
|
Zhou, X., Xu, Y., Zhang, F. (2017) Evaluation of effect of diurnal ambient temperature range on solar chimney power plant performance. International Journal of Heat and Mass Transfer, 115: 398-405
|
|
Zhou, X., Xu, Y. (2016) Solar updraft tower power generation. Solar Energy, 128: 95-125
|
|
|
|