Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 7 od 14  
Back povratak na rezultate
Efekti inercionog i gravitacionog opterećenja na balističke pokrete
nema
Ključne reči: mišić; sposobnost; sila; snaga; brzina; skok uvis; izbačaj
Sažetak
Problem u istraživanju je ispitivanje uticaja inercione i gravitacione komponente opterećenja na balističke pokrete. Uticaj komponenti opterećenja, u ovom istraživanju, ispitivan je na zadacima maksimalnih skokova uvis i izbačaja iz ležećeg položaja na klupi. Na taj način, ispitivan je uticaj inercione i gravitacione sile na dinamička svojstva mišića ruku i mišića nogu. Za potrebe ovog istraživanja korišćena je potpuno nova tehnika (trenažer) kojom se istovremeno ili selektivno uticalo na intezitet inercione i gravitacione komponente spoljašnjeg opterećenja. U istraživanjima je učestvovalo ukupno 30 ispitanika, studenata Fakulteta sporta i fizičkog vaspitanja. Ispitanici su zadatke izvodili u četiri uslova (nezavisne varijable): bez opterećenja, sa pojačanom gravitacionom komponentom (G), pojačanom gravitacionom + inercionom komponentom (G+I) i pojačanom inercionom komponentom opterećenja (I). Uticaj komponenti opterećenja na dinamička svojstva mišića procenjivan je na osnovu praćenja zavisnih varijabli u različitim uslovima izvođenja zadataka - Maksimalna sila (Fmax), Maksimalna brzina (Vmax), Maksimalna snaga (Pmax)... Dobijeni rezultati istraživanja pokazali su da G, G+I i I opterećenja različito utiču na performanse skokova i izbačaja. Povećanje inteziteta G opterećenja povezano je sa najmanjim izmenama u kinematičkoj šemi skoka i najmanjom redukcijom performasi skoka, omogućavajući istovremeno i najveći dinamički izlaz. Dobijeni rezultati ukazali su na značajnije efekte G i I komponente opterećenja na performase izbačaja u odnosu na dobijene efekte u skokovima. Dobijeni rezultati govore u prilog primene opterećenja koje potiče od G komponente (kao što su elastične gume ili elastične opruge), u odnosu na najčešće korišćena opterećenja tegovima (podjednak uticaj G i I komponente), jer će se na taj način obezbediti sličan intezitet sile ali u većoj brzini izvođenja pokreta.
Reference
Anderson, C.E., Sforzo, G.A., Sigg, J.A. (2008) The effects of combining elastic and free weight resistance on strength and power in athletes. Journal of strength and conditioning research, 22(2): 567-74
Argus, C.K., Gill, N.D., Keogh, J.W., Hopkins, W.G. (2011) Assessing Lower-Body Peak Power in Elite Rugby-Union Players. Journal of Strength and Conditioning Research, 25(6): 1616-1621
Baker, D., Nance, S., Moore, M. (2001) The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. Journal of strength and conditioning research, 15(1): 20-4
Baker, D., Nance, S., Moore, M. (2001) The load that maximizes the average mechanical power output during jump squats in power-trained athletes. Journal of strength and conditioning research, 15(1): 92-7
Cavagna, G.A., Zamboni, A., Faraggiana, T., Margaria, R. (1972) Jumping on the moon: power output at different gravity values. Aerospace medicine, 43(4): 408-14
Chang, Y.H., Huang, H.W., Hamerski, C.M., Kram, R. (2000) The independent effects of gravity and inertia on running mechanics. J Exp Biol, (Pt), 229-38; 2; 203
Corcos, D.M., Jaric, S., Agarwal, G.C., Gottlieb, G.L. (1993) Principles for learning single-joint movements. I. Enhanced performance by practice. Experimental brain research, 94(3): 499-513
Cormie, P., McCaulley, G.O., McBride, J.M. (2007) Power versus strength-power jump squat training: influence on the load-power relationship. Medicine and science in sports and exercise, 39(6): 996-1003
Cormie, P., McGuigan, M.R., Newton, R.U. (2011) Developing maximal neuromuscular power: Part 1--biological basis of maximal power production. Sports Medicine, 41(1): 17-38
Cormie, P., McGuigan, M.R., Newton, R.U. (2011) Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production. Sports Medicine, 41(2): 125-46
Cronin, J.B., McNair, P.J., Marshall, R.N. (2000) The role of maximal strength and load on initial power production. Medicine and science in sports and exercise, 32(10): 1763-9
Cronin, J., Sleivert, G. (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Medicine, 35(3): 213-34
de Witt, J.K., Hagan, R.D., Cromwell, R.L. (2008) The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion. Journal of Experimental Biology, 211(7): 1087-1092
Galantis, A., Woledge, R.C. (2003) The theoretical limits to the power output of a muscle-tendon complex with inertial and gravitational loads. Proceedings. Biological sciences, 270(1523): 1493-8
Gosseye, T.P., Willems, P.A., Heglund, N.C. (2010) Biomechanical analysis of running in weightlessness on a treadmill equipped with a subject loading system. European journal of applied physiology, 110(4): 709-28
Griffin, T.M., Tolani, N.A., Kram, R. (1999) Walking in simulated reduced gravity: mechanical energy fluctuations and exchange. Journal of Applied Physiology, 86(1): 383-90
Jaric, S., Gottlieb, G.L., Latash, M.L., Corcos, D.M. (1998) Changes in the symmetry of rapid movements. Effects of velocity and viscosity. Experimental brain research, 120(1): 52-60
Jaric, S. (2000) Changes in movement symmetry associated with strengthening and fatigue of agonist and antagonist muscles. Journal of motor behavior, 32(1): 9-15
Jaric, S., Markovic, G. (2009) Leg muscles design: the maximum dynamic output hypothesis. Medicine and science in sports and exercise, 41(4): 780-7
Markovic, G., Vuk, S., Jaric, S. (2011) Effects of Jump Training with Negative versus Positive Loading on Jumping Mechanics. International Journal of Sports Medicine, 32(05): 365-372
Markovic, G., Jaric, S. (2007) Positive and negative loading and mechanical output in maximum vertical jumping. Medicine and science in sports and exercise, 39(10): 1757-64
Mcbride, J.M., Triplett-Mcbride, T., Davie, A., Newton, R.U. (1999) A Comparison of Strength and Power Characteristics Between Power Lifters, Olympic Lifters, and Sprinters. Journal of Strength and Conditioning Research, 13(1): 58
McMahon, T.A. (1984) Muscles, reflexes and locomotion. Princeton, NJ: Princeton University Press
Newton, R.U., Kraemer, W.J. (1994) Developing Explosive Muscular Power: Implications for a Mixed Methods Training Strategy. Strength and Conditioning Journal, 16(5): 20
Nuzzo, J.L., McBride, J.M., Dayne, A.M., Israetel, M.A., Dumke, C.L., Triplett, N. (2010) Testing of the maximal dynamic output hypothesis in trained and untrained subjects. Journal of strength and conditioning research, 24(5): 1269-76
Samozino, P., Rejc, E., di Prampero, P.E., Belli, A., Morin, J. (2012) Optimal force-velocity profile in ballistic movements--altius: citius or fortius?. Medicine and science in sports and exercise, 44(2): 313-22
Teunissen, L.P.J., Grabowski, A., Kram, R. (2007) Effects of independently altering body weight and body mass on the metabolic cost of running. Journal of Experimental Biology, 210(24): 4418-4427
Vuk, S., Markovic, G., Jaric, S. (2012) External loading and maximum dynamic output in vertical jumping: the role of training history. Human movement science, 31(1): 139-51
Wallace, B.J., Winchester, J.B., McGuigan, M.R. (2006) Effects of elastic bands on force and power characteristics during the back squat exercise. Journal of strength and conditioning research, 20(2): 268-72
Wilson, G.J., Newton, R.U., Murphy, A.J., Humphries, B.J. (1993) The optimal training load for the development of dynamic athletic performance. Medicine and science in sports and exercise, 25(11): 1279-86
Zaciorski, V.M., Kremer, V.J. (2009) Nauka i praksa u treningu snage. Beograd: Data status
 

O članku

jezik rada: srpski
vrsta rada: naučni članak
objavljen u SCIndeksu: 09.06.2015.

Povezani članci

Nema povezanih članaka