Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 9 od 12  
Back povratak na rezultate
2016, vol. 44, br. 2, str. 139-145
Karakterizacija oštećenja kompozitnog materijala od plastike ojačane staklenim vlaknima pri izlaganju cikličnom opterećenju akustičnom emisijom
aRMK College of Engineering and Technology, Department of Mechanical Engineering, India
bRMK Engineering College, Department of Mechanical Engineering, India

e-adresadhanushaudi@gmail.com
Ključne reči: GFRP laminate; cyclic loading; flexural modulus; acoustic emission
Sažetak
Epoksi GFRP (glass fibre reinforced plastic) kompozitni laminati sa ukrštenim vlaknima (0/90/90/0) i vlaknima orijentisanim pod uglom (0/30/60/0) bili su izloženi dinamičkom opterećenju, sa konstantnom amplitudom pri 8,6 Hz, sa promenljivim ciklusima opterećenja. Opterećenje je postavljeno na uzorak lisnate opruge automobila u cilju izvođenja simulacije opterećenja (uzimajući u obzir interakciju druma i pneumatika). Modul savitljivosti sirovog i prethodno opterećenog uzorka dobijen je ispitivanjem na savijanje u tri tačke metodom ASTM D790. Kod obe vrste laminata zapaženo je opadanje vrednosti modula savijanja prilikom izlaganja dinamičkom opterećenju. Kod ispitivanja na savijanje reakcija materijala na opterećenje savijanjem ocenjivana je praćenjem akustične emisije od strane uzorka izloženog savijanju. Analiza rezultata akustične emisije pokazala je da postoji uticaj orijentacije vlakana kod kontrolisanja prenosa oštećenja i obima oštećenja kao što je pucanje matrice, razdvajanje, delaminacija i pucanje vlakana.
Reference
Caprino, G., Teti, R., de Iorio, I. (2005) Predicting residual strength of pre-fatigued glass fibre-reinforced plastic laminates through acoustic emission monitoring. Composites Part B: Engineering, 36(5): 365-371
de Kok, J.M.M., Meijer, H.E.H. (1999) Deformation, yield and fracture of unidirectional composites in transverse loading. Composites Part A: Applied Science and Manufacturing, 30(7): 905-916
de Rosa, I.M., Sarasini, F. (2010) Use of PVDF as acoustic emission sensor for in situ monitoring of mechanical behaviour of glass/epoxy laminates. Polymer Testing, 29(6): 749-758
Gagel, A., Lange, D., Schulte, K. (2006) On the relation between crack densities, stiffness degradation, and surface temperature distribution of tensile fatigue loaded glass-fibre non-crimp-fabric reinforced epoxy. Composites Part A: Applied Science and Manufacturing, 37(2): 222-228
Mechraoui, S., Laksimi, A., Benmedakhene, S. (2012) Reliability of damage mechanism localisation by acoustic emission on glass/epoxy composite material plate. Composite Structures, 94(5): 1483-1494
Morioka, K., Tomita, Y. (2000) Effect of lay-up sequences on mechanical properties and fracture behavior of CFRP laminate composites. Materials Characterization, 45(2): 125-136
Pradhan, B., Kumar, N.V., Rao, N. (1999) Stiffness degradation resulting from 90° ply cracking in angle-ply composite laminates. Composites Science and Technology, 59(10): 1543-1552
Renard, J., Thionnet, A. (2006) Damage in composites: From physical mechanisms to modelling. Composites Science and Technology, 66(5): 642-646
Sakin, R., Ay, İ., Yaman, R. (2008) An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials. Materials & Design, 29(1): 212-217
Salvia, M. (1997) Flexural fatigue behaviour of UDGFRP experimental approach. International Journal of Fatigue, 19(3): 253-262
Shokrieh, M.M., Taheri-Behrooz, F. (2006) A unified fatigue life model based on energy method. Composite Structures, 75(1-4): 444-450
Talib, A.R.A., Ali, A., Goudah, G., Lah, N.A.C., Golestaneh, A.F. (2010) Developing a composite based elliptic spring for automotive applications. Materials & Design, 31(1): 475-484
Vallons, K., Zong, M., Lomov, S.V., Verpoest, I. (2007) Carbon composites based on multi-axial multi-ply stitched preforms - Part 6. Fatigue behaviour at low loads: Stiffness degradation and damage development. Composites Part A: Applied Science and Manufacturing, 38(7): 1633-1645
Wang, J., Karihaloo, B.L. (1997) Matrix crack-induced delamination in composite laminates under transverse loading. Composite Structures, 38(1-4): 661-666
Yokozeki, T., Aoki, T., Ogasawara, T., Ishikawa, T. (2005) Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite laminates. Composites Part A: Applied Science and Manufacturing, 36(9): 1229-1235
Yuanjian, T., Isaac, D.H. (2008) Combined impact and fatigue of glass fiber reinforced composites. Composites Part B: Engineering, 39(3): 505-512
Zhang, Z. (2002) Relation of damping and fatigue damage of unidirectional fibre composites. International Journal of Fatigue, 24(7): 713-718
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet1602139L
objavljen u SCIndeksu: 25.06.2016.
Creative Commons License 4.0