Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 1 od 13  
Back povratak na rezultate
2020, vol. 48, br. 1, str. 117-126
Nova tehnika izračunavanja aerodinamičkih koeficijenata gubitka sile uzgona kod S809 aeroprofila
aUniversity of Moulay Ismail ENSAM Meknes, Department of Energy, Morocco
bUniversity of Moulay Ismail ENSAM Meknes, Department of Mechanical Enginering and Structures, Morocco

e-adresaj.arramach@edu.umi.ac.ma
Projekat:
This work was partially supported by the National Centre for Scientific and Technical Research (CNRST), and by the doctoral studies centre of ENSAM MEKNES (CEDoc), which are greatly appreciated

Ključne reči: wind turbine; potential theory; aerodynamic coefficients; boundary layers; S809 airfoil; stall
Sažetak
Nacionalna laboratorija za obnovljivu energiju je 2000. godine organizovala "poređenje na slepo" u kojem su učestvovali istraživački centri iz celog sveta i od kojih se tražilo da dostave podatke o stacionarnom aerodinamičkom opterećenju kod turbine Faza 6 i aerodinamičke koeficijente za S809 aeroprofil. Instituti su poslali podatke o izvršenim merenjima u aerodinamičkom tunelu i programe numeričkih izračunavanja. Rezultati su pokazali veliki stepen neusaglašenosti i rasutosti podataka naročito za kovit. Razlike u pogledu aerodinamičkih svojstava su ukazale na potrebu poboljšanja postojećih pravila dizajna i primenu novih numeričkih metoda. Cilj rada je da se aerodinamički koeficijenti za S809 aeroprofil prikažu u priključenom strujanju i nastajanju kovita uz korišćenje dodatnog potencijalnog metoda i teorije graničnih slojeva. Za zonu potpunog gubitka sile uzgona uvedena je nova tehnika bazirana na modelu AERODAS koji je razvila NASA. Model je poboljšan uvođenjem Rejnoldsovog broja i onemogućavanjem numeričke nestabilnosti koju bi mogao da izazove prelazak iz zona pre gubitka uzgona u zone sa gubitkom uzgona. Rezultati naših proračunavanja su bili negde na sredini rezultata dobijenih "poređenjem na slepo" ali se rezultati merenja nisu mnogo razlikovali.
Reference
Arramach, J., Boutammachte, N., Bouatem, A., al Mers, A. (2014) Advanced calculations of S809 aerodynamic characteristics based on potential theory of wing sections. Journal of MacroTrends in Energy and Sustainability, Vol 2, Issue 2014
Arramach, J., Boutammachte, N.E., Almers, A., Bouatem, A. (2015) Viscous-inviscid interaction technique for prediction of aerodynamic characteristics of HAWT blade S809 airfoil. u: Renewable and Sustainable Energy Conference (IRSEC), 2015 3rd International, IEEE, 16
Bernadett, D.W., van Dam, C.P. Comparison of predictions of airfoil characteristics for the NREL S805 and S809 airfoils. u: Windpower 93, San Francisco, CA, 290298
Butterfield, C.P., Musial, W.P., Simms, D.A. (1992) Combined experiment phase 1: Final report (No. NREL/TP (257-4655). Golden, CO, United States: National Renewable Energy Lab
Cebeci, T., Bradshaw, P. (1977) Momentum transfer in boundary layers. Washington, DC: Hemisphere Publishing Corp, 407 p., 1
Cebeci, T., Smith, A.M.O. (1974) Analysis of turbulent boundary layers. Academic Press Inc
Eppler, R., Somers, D. (1980) A computer program for the design and analysis of low-speed airfoils. NASA Technical Memorandum 80210
Glauert, H. (1926) Elements of airfoil and airscrew theory. Cambridge University Press
Head, M.R. (1960) Entrainment in the turbulent boundary layer. HM Stationery Office
Hess, J.L., Smith, A.M.O. (1967) Calculation of potential flow about arbitrary bodies. Progress in Aerospace Sciences, 8, 1-138
Houghton, E.L., Carpenter, P.W. (2003) Aerodynamics for engineering students. Butterworth-Heinemann
Lanzafame, R., Messina, M. (2007) Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory. Renewable Energy, 32(14), 2291-2305
Lindenburg, C. (2000) Stall coefficients: ECN-RX{01-004. u: 12th IEA Symposium on the Aerodynamics of Wind Turbines, 2000, Petten, January
Lindenburg, C. (2003) Investigation into rotor blade aerodynamics-analysis of the stationary measurements on the UAE phase-VI rotor in the NASA-Ames wind tunnel. Petten, The Netherlands: Energy Research Centre in the Netherlands (ECN), Tech. Rep. No. ECN C-03-025
Ocokoljić, G., Damljanović, D., Vuković, Đ., Rašuo, B. (2018) Contemporary frame of measurement and assessment of wind-tunnel flow quality in a low-speed facility. FME Transactions, vol. 46, br. 4, str. 429-442
Ramsay, R.F., Hoffman, M.J., Gregorek, G.M. (1995) Effects of grit roughness and pitch oscillations on the S809
Schetz, J.A., Bowersox, R.D. (2010) Boundary layer analysis. American Institute of Aeronautics and Aeronautics
Somers, D.M. (1989) Design and experimental results for the S809 airfoil. PA: Airfoils. Inc
Spera, D.A. (2008) Models of lift and drag coefficients of stalled and unstalled airfoils in wind turbines and wind tunnels. National Aeronautics and Space Administration, NASA/CR-2008-215434
Thwaites, B. (1949) Approximate calculation of the laminar boundary layer. Royal Aeronautical Society
VSAERO (1994) VSAERO users manual. Redmond, WA: Analytical Methods Inc, Rev. E.5
Wolfe, W., Ochs, S. (1997) CFD calculations of S809 aerodynamic characteristics. u: 35th Aerospace Sciences Meeting and Exhibit, 973
Zhang, S., Yuan, X., Dajun, Y. (2001) Analysis of turbulent separated flows for the NREL airfoil using anisotropic two-equation models at higher angles of attack. Wind Engineering, 25(1), 4153-4153
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet2001117A
objavljen u SCIndeksu: 04.05.2020.
Creative Commons License 4.0