- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:2
- preuzimanja u poslednjih 30 dana:0
|
|
2014, vol. 34, br. 34, str. 69-80
|
Hemijski sastav i inhibitorna aktivnost odabranih etarskih ulja na gljive izolovane sa lekovitog bilja
Chemical composition and inhibitory activity of selected essential oils against fungi isolated from medicinal plants
aInstitut za proučavanje lekovitog bilja 'Dr Josif Pančić', Beograd, Srbija bUniverzitet u Beogradu, Biološki fakultet, Srbija cUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM, Srbija dUniverzitet u Beogradu, Institut za biološka istraživanja 'Siniša Stanković', Srbija
Projekat: Tradicionalni i novi proizvodi od plodova gajenih i samoniklih vrsta voćaka i vinove loze i nus-produkata u preradi, sa posebnim osvrtom na autohtone sorte: hemijska karakterizacija i biološki profil (MPNTR - 46013) Projekat Ministarstva nauke Republike Srbije, br. OI 17302
Sažetak
Poslednjih godina velika pažnja poklanja se biološkoj kontroli to jest primeni prirodnih produkata u zaštiti, kako poljoprivrednih kultura, tako i lekovitog bilja od kontaminacije fitopatogenim i saprofitnim gljivama. U tom smislu, ispitivan je antifungalni potencijal šest etarskih ulja uz određivanje kompletnog kvalitativnog i kvantitativnog hemijskog sastava primenom GC-FID i GC-MS analiza. Dok se korišćeni uzorci etarskih ulja ruzmarina, žalfije, španske žalfije i crnog bibera isključivo sastoje od monoterpena, u ulju vetivera potpuno dominiraju seskviterpeni. U etarskom ulju cimeta najzastupljenija komponneta je bila (E)- cinemaldehid. Primenom in vitro mikrodilucione metode, utvrđeno je da su sva ulja bila aktivna u inhibiciji rasta 21 testirane, pre- i post-žetvene, fitopatogene i saprofitne gljive, sa razlikama u efikasnosti. MIC i MFC vrednosti su varirale u opsegu od 1,2 mg ml-1 do 22,6 mg ml-1, u zavisnosti od ispitivanog ulja. Najbolja antifungalna aktivnost utvrđena je za ulje ruzmarina, nešto slabija za ulja crnog bibera i cimeta, dok je ulje vetivera ispoljilo najslabiju aktivnost. Etarska ulja obe vrste žalfija ispoljila su značajan antifungalni potencijal. Etarska ulja koja poseduju značajan antifungalni potencijal su dobri kandidati za nastavak istraživanja u pravcu njihove primene u prevenciji i zaštiti useva lekovitog bilja, kao i njihovih semena i osušenih biljnih droga od gljivičnih infekcija, i u polju i u skladištima.
Abstract
In recent years great attention was paid to biological control, the application of natural products in order to protect crops and medicinal plants against contamination with phytopathogenic and saprophytic fungi. Essential oils have been evaluated as a potentially safe replacement for chemicals used for that purpose. In this regard, antifungal potential of six essential oils was examined coupled with determination of the complete qualitative and quantitative chemical composition by GC-FID and GC-MS analysis. While essential oils of rosemary, sage, Spanish sage and black pepper were exclusively composed of monoterpenes, vetiver essential oil was entirely composed of sesquiterpenes. In essential oil of cinnamon dominates (E)-cinnamaldehyde. Applying the in vitro microdilution method, it was found that all essential oils were active in inhibiting the growth of all tested 21 pre- and post-harvest phytopathogenic and saprophytic fungi. MIC and MFC ranged from 1.2 mg ml-1 up to 22.6 mg ml-1 according to the test oil. Rosemary oil showed the best antifungal potential, followed by black pepper and cinnamon oil. Sage and Spanish sage oils also exhibited significant antifungal potential. Vetiver oil demonstrated the lowest antifungal activity. Essential oils that showed considerable antifungal potential are good candidates for further examination of their use in preventing and/or protection of medicinal plants, their seeds and dried drugs against fungal infections, both in the field and in warehouses.
|
|
|
Reference
|
1
|
Abdel-Kader, M., El-Mougy, N., Lashin, S. (2011) Essential Oils and Trichoderma Harzianum as an Integrated Control Measure Against Faba Bean Root Rot Pathogens. Journal of Plant Protection Research, 51(3): 306 313
|
|
Bouzenna, H., Krichen, L. (2013) Pelargonium graveolens L'Her. and Artemisia arborescens L. essential oils: chemical composition, antifungal activity against Rhizoctonia solani and insecticidal activity against Rhysopertha dominica. Natural product research, 27(9): 841-6
|
|
Champagnat, P., Figueredo, G., Chalchat, J., Carnat, A., Bessière, J. (2006) A Study on the Composition of Commercial Vetiveria zizanioides Oils from Different Geographical Origins. Journal of Essential Oil Research, 18(4): 416-422
|
10
|
Daouk, K.D., Dagher, M.S., Sattout, J.E. (1995) Antifungal activity of the essential oil of Origanum syriacum L. J Food Prot, vol. 58, 1147-1149
|
1
|
Deba, F., Xuan, T.D., Yasuda, M., Tawata, S. (2008) Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control, 19(4): 346-352
|
4
|
Hänel, H., Raether, W. (1988) A more sophisticated method of determining the fungicidal effect of water-insoluble preparations with a cell harvester, using miconazole as an example. Mycoses, 31(3): 148-54
|
5
|
Isman, B.M. (2000) Plant essential oils for pest and disease management. Crop Protection, 19, 603-608
|
|
Jiang, Y., Wu, N., Fu, Y., Wang, W., Luo, M., Zhao, C., Zu, Y., Liu, X. (2011) Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environmental toxicology and pharmacology, 32(1): 63-8
|
5
|
Kalemba, D., Kunicka, A. (2003) Antibacterial and antifungal properties of essential oils. Current medicinal chemistry, 10(10): 813-29
|
|
Krauze-Baranowska, M., Mardarowicz, M., Wiwart, M., Pobłocka, L., Dynowska, M. (2002) Antifungal Activity of the Essential Oils from Some Species of the Genus Pinus. Zeitschrift für Naturforschung C, 57c, 478-482
|
|
Lakusić, D., Ristić, M., Slavkovska, V., Lakusić, B. (2013) Seasonal variations in the composition of the essential oils of rosemary (Rosmarinus officinalis, Lamiaceae). Natural product communications, 8(1): 131-4
|
|
Lee, S.Y., Kim, S.H., Hong, C.Y., Park, M., Choi, I. (2012) Effects of (−)-borneol on the growth and morphology of Aspergillus fumigatus and Epidermophyton floccosom. Flavour and Fragrance Journal, 28(2): 129-134
|
1
|
Lopez-Reyes, J.G., Spadaro, D., Prelle, A., Garibaldi, A., Gullino, M.L. (2013) Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo. Journal of food protection, 76(4): 631-9
|
|
Magiatis, P., Melliou, E., Skaltsounis, A.L., Chinou, I.B., Mitaku, S. (1999) Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta medica, 65(8): 749-52
|
|
Menon, A. N., Padmakumari, K.P., Jayalekshmy, A., Gopalakrishnan, M., Narayanan, C.S. (2000) Essential Oil Composition of Four Popular Indian Cultivars of Black Pepper ( Piper nigrum L.). Journal of Essential Oil Research, 12(4): 431-434
|
|
Mockuté, D., Nivinskiené, O., Bernotiené, G., Butkiené, R. (2003) The cisthujone chemotype of Salvia officinalis L. essential oils. Chemija, Vilnius, vol. 14, (4), 216-220
|
|
Ooi, L.S.M., Li, Y., Kam, S., Wang, H., Wong, E.Y.L., Ooi, V.E.C. (2006) Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. American journal of Chinese medicine, 34(3): 511-22
|
|
Perry, N.S., Houghton, P.J., Theobald, A., Jenner, P., Perry, E.K. (2000) In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. Journal of pharmacy and pharmacology, 52(7): 895-902
|
|
Pitarokili, D., Tzakou, O., Couladis, M., Verykokidou, E. (1999) Composition and Antifungal Activity of the Essential Oil of Salvia pomifera subsp. calycina Growing Wild in Greece. Journal of Essential Oil Research, 11(5): 655-659
|
|
Rapp, R.P. (2004) Changing strategies for the management of invasive fungal infections. Pharmacotherapy, 24(2 Pt 2): 4S-28S; quiz 29S-32S
|
1
|
Singh, G., Maurya, S., DeLampasona, M.P., Catalan, C.A.N. (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and chemical toxicology, 45(9): 1650-61
|
1
|
Skandamis, P., Koutsoumanis, K., Fasseas, K., Nychas, G.J.E. (2001) Inhibition of oregano essential oil and EDTA on Escherichia coli O157:H7. Italian Journal of Food Science, 13, pp 65-75
|
3
|
Stević, T., Pavlović, S., Stanković, S., Šavikin, K. (2012) Pathogenic microorganisms of medicinal herbal drugs. Archives of Biological Sciences, vol. 64, br. 1, str. 49-58
|
|
Tabassum, N., Vidysagar, G.M. (2013) Antifungal investigations on plant essential oils. A review. Int J. Pharm. Pharm. Sci, vol. 5(2), 19-28
|
1
|
Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., de Pasquale, A., Saija, A. (2005) Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry, 89(4): 549-554
|
2
|
Vilela, G.R., Almeida, G.S., i dr. (2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. Journal of Stored Products Research, 45(2): 108
|
|
Zuzarte, M., Gonçalves, M.J., Cavaleiro, C., Dinis, A.M., Canhoto, J.M., Salgueiro, L.R. (2009) Chemical Composition and Antifungal Activity of the Essential Oils of Lavandula pedunculata (Miller) Cav. Chemistry and Biodiversity, 6(8): 1283-1292
|
|
|
|