Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:30
  • preuzimanja u poslednjih 30 dana:10

Sadržaj

članak: 1 od 78  
Back povratak na rezultate
2021, vol. 58, br. 1, str. 1-6
Uticaj različitih kombinacija izvora ugljenika i azota u podlozi za proizvodnju biokontrolnog agensa Trichoderma harzianum
aUniverzitet u Novom Sadu, Tehnološki fakultet, Katedra za biotehnologiju i farmaceutsko inženjerstvo
bNaučni institut za ratarstvo i povrtarstvo, Novi Sad

e-adresatadi@uns.ac.rs
Projekat:
The study is the result of the investigations conducted within the project 142-451-3213/2020-03 funded by Provincial Secretariat for Higher Education and Scientific Research, Autonomous Province of Vojvodina, Republic of Serbia.

Ključne reči: Aspergillus flavus; biokontrola; ugljenik; dekstroza; Fusarium graminearum; podloga; azot; sojino brašno; Trichoderma harzianum; difuziona metoda sa bunarima
Sažetak
Sve veća upotreba hemijskih sredstava za zaštitu bilja poslednjih godina postala je ozbiljan problem. Upotreba korisnih mikroorganizama umesto sintetičkih fungicida u biološkoj zaštiti sigurno je jedno od rešenja koje doprinose zaštiti životne sredine i ljudskog zdravlja. S obzirom na to da se gljive Aspergillus flavus i Fusarium graminearum pominju kao najvažniji prouzrokovači bolesti kukuruza, proizvođači mikotoksina, u ovom radu ispitan je antifungalni efekat Trichoderma harzianum na obe fitopatogene gljive. Cilj ovog rada je ispitati uticaj različitih kombinacija ugljenika i azota u podlozi za proizvodnju T. harzianum. Kultivacija T. harzianum izvedena je u erlenmajerima na rotacionoj tresilici, a aktivnost dobijene kultivacione tečnosti na odabrane fitopatogene kukuruza ispitana je difuzionom metodom sa bunarima. Rezultati ovog rada pokazali su da kombinacija različitih izvora ugljenika i azota u podlozi statistički značajno utiče na proizvodnju Trichoderma kultivacione tečnosti efikasne na dve testirane fitopatogene gljive. Kombinacija koja sadrži dekstrozu kao izvor ugljenika i sojino brašno kao izvor azota pokazala se najboljom za formulaciju podloge za proizvodnju T. harzianum kultivacione tečnosti efikasne na patogene kukuruza, A. flavus i F. graminearum, formirajući maksimalne prečnike zona inhibicije od 31 mm, odnosno 56,33 mm.
Reference
Ahamed, A., Vermette, P. (2009) Effect of culture medium composition on Trichoderma reesei's morphology and cellulase production. Bioresource Technology, 100(23): 5979-5987
Al-Taweil, H.I., Osman, M.B., Abdul, H.A., Yusoff, W.M.W. (2009) Optimizing of Trichoderma viride cultivation in submerged state fermentation. American Journal of Applied Sciences, 6(7): 1284-1288
Babec, B., Hladni, N., Šeremešić, S., Jocković, M., Ćuk, N., Gvozdenac, S., Miklič, V., Vojnov, B. (2019) Feasibility of growing conventional confectionary sunflower hybrids in organic agriculture: preliminary results of organic trials. Ratarstvo i povrtarstvo, vol. 56, br. 1, str. 26-33
Beisl, J., Pahlke, G., Abeln, H., Ehling-Schulz, M., Del, F.G., Varga, E., Warth, B., Sulyok, M., Abia, W., Ezekiel, C.N., Marko, D. (2020) Combinatory efects of cereulide and deoxynivalenol on in vitro cell viability and infammation of human Caco-2 cells. Archives of Toxicology, 94:833-844
Bunbury-Blanchette, A., Walker, A.K. (2019) Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control, 130, 127-135
Calistru, C., Mclean, M., Berjak, P. (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species: A study of the production of extracellular metabolites by Trichoderma species. Mycopathologia, 137(2): 115-124
Chalie-u, R., Jakhar, S.R., Mitra, N.G., Wasnikar, A.R., Sahu, R.K. (2019) Biomass production of Trichoderma viride as influenced by carbon and nitrogen sources. International Journal of Current Microbiology and Applied Sciences, 8(06): 3269-3274
Gao, L., Sun, M.H., Liu, X.Z., Che, Y.S. (2007) Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycological Research, 111(1): 87-92
García-Díaz, M., Gil-Serna, J., Vázquez, C., Botia, M.N., Patiño, B. (2020) A comprehensive study on the occurrence of mycotoxins and their producing fungi during the maize production cycle in Spain. Microorganisms, 8(1): 141-141
Grahovac, J., Mitrović, I., Dodić, J., Grahovac, M., Rončević, Z., Dodić, S., Jokić, A. (2020) Biocontrol agent for apple Fusarium rot: Optimization of production by Streptomyces hygroscopicus. Zemdirbyste-Agriculture, 107(3): 263-270
Kifle, M.H., Yobo, K.S., Laing, M.D. (2017) Biocontrol of Aspergillus flavus in groundnut using Trichoderma harzianum stain kd. Journal of Plant Diseases and Protection - New Series, 124(1): 51-56
Kobori, N.N., Mascarin, G.M., Jackson, M.A., Schisler, D.A. (2015) Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology, 119(4): e179-190
Larran, S., Santamarina, S.M. P., Roselló, C.J., Simón, M.R., Perelló, A. (2020) In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling blight and seed rot on wheat. ACS Omega, 5(36): 23276-23283
Leslie, J.F., Summerell, B.A. (2006) The Fusarium laboratory manual. Ames, Iowa, USA: Blackwell Publishing
Mehta, J., Jakhetia, M., Choudhary, S., Mirza, J., Sharma, D., Khatri, P., Gupta, P., Nair, M.M. (2012) Impact of carbon & nitrogen sources on the Trichoderma viride (biofungicide) and Beauveria bassiana (entomopathogenic fungi). European Journal of Experimental Biology, 2(6): 2061-2067
Mitrović, B., Drašković, B., Stanisavljević, D., Perišić, M., Čanak, P., Mitrović, I., Tančić-Živanov, S. (2020) Environmental modeling of interaction variance for grain yield of medium early maturity maize hybrids. Genetika, 52(1): 367-378
Mohiddin, F.A., Bashir, I., Padder, S.A., Hamid, B. (2017) Evaluation of different substrates for mass multiplication of Trichoderma species. Journal of Pharmacognosy and Phytochemistry, 6(6): 563-569
Rajput, A.Q., Khanzada, M.A., Shahzad, S. (2014) Effect of different organic substrates and carbon and nitrogen sources on growth and shelf life of Trichoderma harzianum. Journal of Agricultural Science and Technology, 16(4): 731-745
Samuels, G.J., Hebbar, K.P. (2015) Trichoderma: Identification and agricultural applications. St Paul, Minnesota, USA: APS
Silva, R.N., Monteiro, V.N., Steindorff, A.S., Gomes, E.V., Noronha, E.F., Ulhoa, C.J. (2019) Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology, 123(8): e565-583
Singh, A., Shahid, M., Srivastava, M., Pandey, S., Sharma, A., Kumar, V. (2014) Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virology and Mycology, 3: 127-127
Tadijan, I., Grahovac, J., Dodić, J., Grahovac, M., Dodić, S. (2016) Effect of cultivation time on production of antifungal metabolite(s) by Streptomyces hygroscopicus in laboratory-scale bioreactor. Journal of Phytopathology, 164(5): 310-317
Tančić-Živanov, S., Jevtić, R., Lalošević, M., Živanov, D., Medić-Pap, S., Župunski, V. (2017) Efficacy of Trichoderma spp. against Common Fungal Pathogens. Ratarstvo i povrtarstvo, vol. 54, br. 3, str. 104-109
Tatay, E., Espín, S., García-Fernández, A., Ruiz, M. (2018) Estrogenic activity of zearalenone, a-zearalenol and b-zearalenol assessed using the E-screen assay in MCF-7 cells. Toxicology Mechanisms and Methods, 28(4): 239-242
Watanabe, T. (2010) Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. Boca Raton, USA: CRC Press
Zhi-Xiang, L., Guang-Ping, T., Ting, Z., Ya-Qian, L., Xin-Hua, W., Quan-Guo, Z., Wei, S., Jie, C. (2020) Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize. Journal of Integrative Agriculture, 19(1), 145-152
Zin, N.A., Badaluddin, N.A. (2020) Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2): 168-178
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/ratpov58-29961
primljen: 21.12.2020.
prihvaćen: 22.01.2021.
objavljen u SCIndeksu: 29.04.2021.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Biotech Anim Husbandry (2020)
Prirodna pojava toksigenih gljiva i mikotoksina u hibridima kukuruza
Krnjaja Vesna, i dr.

Zaštita bilja (2013)
Ispitivanje zdravstvenog stanja različitih genotipova semena lucerke
Štrbanović Ratibor, i dr.

Pesticidi i fitomedicina (2019)
Biodiverzitet gljiva na zrnima kukuruza u ogledu za ispitivanje efikasnosti insekticida
Tančić-Živanov Sonja, i dr.

prikaži sve [4]