Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 1 od 83  
Back povratak na rezultate
Finansijski racio pokazatelji kao rani prediktori poslovnog neuspeha - iskustvo iz Srbije
Univerzitet u Novom Sadu, Ekonomski fakultet, Subotica, Srbija

e-adresakuschter@yahoo.com
Ključne reči: poslovni neuspeh; bankrot; finansijski pritisak; Mann-Whitney; finansijska racia
Sažetak
Problem bankrotstva preduzeća godinama intrigira naučnu javnost zbog svog praktičnog značaja. Nema zemlje na čije ekonomsko blagostanje ne utiču poslovni neuspesi. Problem istraživanja proizilazi iz nedostatka analiza iz Republike Srbije koje se odnose na pitanje poslovnih neuspeha. Osnovni cilj ovog istraživačkog rada je da se utvrdi da li su racio pokazatelji relevantni za predviđanje poslovnog neuspeha jednu, dve i tri godine pre pokretanja stečajnog postupka. Istraživanje je sprovedeno na uzorku od 100 preduzeća sa teritorije Republike Srbije. Podaci za obračun racia preuzeti su sa zvaničnog sajta Agencije za privredne registre. Statistička analiza se zasniva na MannWhitney testu koji se koristi za identifikaciju razlika između dve grupe u odnosu na neku varijablu (racio). Test je sproveden u IBM-ovom SPSS v.26 alatu. Rezultati istraživanja ukazuju na to da finansijski pokazatelji mogu biti korisni za predviđanje poslovnog neuspeha čak i tri godine pre pokretanja stečajnog postupka, jer postoje statistički značajne razlike u vrednostima racia između bankrotiralih i solventnih preduzeća.
Reference
Naknadno pridodat članak: provera, normiranje i linkovanje referenci u toku.
Alaminos, D., del Castillo, A., Fernández, M. Á., & Ponti, G. (2016). A global model for bankruptcy prediction. PLOS ONE, 11(11). Doi: https://doi.org/10.1371/journal.pone.0166693
Altman, E. I. (1968). Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609. Doi: https://doi.org/10.2307/2978933
Altman, E. I., & Levallee, M., Y. (1980). Business failure classification in Canada. Journal of Business Administration, 12(1), 147-164.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. Doi: https://doi.org/10.2307/2490171
Becerra, V., Galvao, R. and Abou-Seada, M. (2005). Neural and wavelet network models for financial distress classification. Data Mining and Knowledge Discovery, 11(1), 35-55. Doi: https://doi.org/10.1007/s10618-005-1360-0
Bilderbeek, J. (1979). De continuïteitsfactor als beoordelingsinstrument van ondernemingen. Accountacy en Bedrijfskunde Kwartaalschrift, 4(3), 58-61.
Chesser, D. (1974). Predicting loan noncompliance. The Journal of Commercial Bank Lending, 56(12), 28-38.
Ciampi, F., & Gordini, N. (2008). Using economic-financial ratios for small enterprise default prediction modeling: an empirical analysis. Oxford Business & Economics Conference Proceedings, Association for Business and Economics Research (ABER), 1-21.
Cultrera, L., & Bredart, X. (2016). Bankruptcy prediction: the case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101-119. Doi: https://doi.org/10.1108/raf-06-2014-0059
Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179. Doi: https://doi.org/10.2307/2490225
Dewaelheyns, N. & Van Hulle, C. (2004). The impact of business group on bankruptcy prediction modelling. Tijdschrift voor Economie en Management, 49(4), 623-645.
Field, A. (2009). Discovering Statistics using SPSS. London: SAGE Publications Ltd.
Fitzpatrick, P. (1932). A comparison of ratios of successful industrial enterprises with those of failed firms. Certified Public Accountant, 1(1), 598-605.
Frydman, H., Newblod, P. & Whiteford, D.T. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance, 40(1), 269-291.
Gordini, N. (2014). A genetic algorithm approach for SMEs bankruptcy prediction: empirical evidence from Italy. Expert Systems with Applications, 41(14), 6433-6445. Doi: http://dx.doi.org/10.1016/j.eswa.2014.04.026
Jardin, P. (2009). Bankruptcy prediction models: How to choose the most relevant variables?. Bankers, Markets & Investors, 98(1-2), 39-46.
Keasey, K. and McGuinness, P. (1990). The failure of UK industrial firms for the period 1976-1984: logistic analysis and entropy measures. Journal of Business Finance and Accounting, 17(1), 119-135.
Korol, T. (2019). Dynamic bankruptcy prediction models for European enterprises. Journal of Risk and Financial Management, 12(4), 185. Doi: https://doi.org/10.3390/jrfm12040185
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50-60.
McKee, T. E. (1995). Predicting bankruptcy via induction. Journal of Information Technology, 10(1), 26-36. Doi: https://doi.org/10.1177/026839629501000104
Milic, D., Tekic, D., Zekic, V., Novakovic, T., Popov, M., & Mihajlov, Z. (2021). Bankruptcy prediction models for large agribusiness companies in AP Vojvodina. Economics of Agriculture, 68(3). 805-822. Doi: https://doi.org/10.5937/ekoPolj2103805M.
Mirovic, V., Kalas, B., Milenkovic, N., & Andrasic, J. (2022). Profitability management of tourism sector in AP Vojvodina. Strategic Management, 27(1), 57-63. Doi: https://doi.org/10.5937/StraMan2110004M
Mitrovic, A., Knezevic, S., & Milasinovic, M. (2021). Profitability analysis of hotel companies in the Republic of Serbia. Hotel and Tourism Management, 9(1), 121-134. Doi: https://doi.org/10.5937/menhottur2101121M
Mizdrakovic, V., & Bokic, M. (2017). Reassessment of corporate bankruptcy prediction models efficiency: evidence from Serbia. Teme, 40(4), 1368-1382. Doi: https://doi.org/10.22190/TEME1604367M
Obradovic, B. D., Jaksic, D., Rupic, B. I., & Andric, M. (2018). Insolvency prediction model of the company: the case of the Republic of Serbia. Economic Research, 31(1), 139-157, Doi: https://doi.org/10.1080/1331677X.2017.1421990
Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. Doi: https://doi.org/10.2307/2490395
Papana, A., & Spyridou, A. (2020). Bankruptcy prediction: the case of the Greek market. Forecasting, 2(4), 505-525. Doi: https://doi.org/10.3390/forecast2040027
Parnicki, P. P., Petrovic, Z. D., & Tucakovic, J. (2021). Financial malpractice as a destabilization factor of real financial reporting. The Annals of the Faculty of Economics in Subotica, 57(46), 149-160. Doi: https://doi.org/10.5937/AnEkSub2145149P
Pervan, I., Pervan, M., & Vukoja, B. (2011). Prediction of company bankruptcy using statistical techniques -case of Croatia. Croatian Operational Research Review, 2(1), 158-167. Available at: https://hrcak.srce.hr/96660
Platt, H. D., Platt, M. B., Pedersen, J. G. (1994). Bankruptcy discrimination with real variables. Journal of Business Finance & Accounting, 21(4), 491-510. Doi: https://doi.org/10.1111/j.1468-5957.1994.tb00332.x
Rosenthal, R. (1991). Meta-analytic procedures for social research (2 nd ed.). Newbury Park, CA: Sage.
Sfakianakis, E. (2021). Bankruptcy prediction model for listed companies in Greece. Investment Management and Financial Innovations, 18(2), 166-180. Doi: https://doi.org/10.21511/imfi.18(2).2021.14
Shah, J., & Murtaza, M. (2000). A neural network based clustering procedure for bankruptcy prediction. American Business Review, 18(2), 80-86. Available at: https://digitalcommons.newhaven.edu/americanbusinessreview/vol18/iss2/4
Shumway, T. (2001). Forecasting bankruptcy more accurately: a simple hazard model. The Journal of Business, 74(1), 101-124. Doi: https://doi.org/10.1086/209665
Slefendorfas, G. (2016). Bankruptcy prediction model for private limited companies of Lithuania. Ekonomika, 95(1), 134-152. Doi: https://doi.org/10.15388/Ekon.2016.1.9910.
Stephen, A. H., Elizabeth, K. K., Donald, P. C., & Kyle, G. L. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5-34. Doi: https://doi.org/10.1023/b:rast.0000013627.90884.b7
Svabova, L., Kramarova, K., & Durica, M. (2018). Prediction model of firm's financial distress. Ekonomicko-manazerske spektrum, 12(1). Doi: https://dx.doi.org/10.26552/ems.2018.1.16-29
Svabova, L., Michalkova, L., Durica, M., & Nica, E. (2020). Business failure prediction for Slovak small and medium-sized companies. Sustainability, 12(11), 4572. Doi: https://doi.org/10.3390/su12114572
Taffler, R. J. (1983). The assessment of company solvency and performance using a statistical model. Accounting and Business Research, 13(52), 295-308. Doi: https://doi.org/10.1080/00014788.1983.9729767
Theodossiou, P. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business and Accounting, 18(5), 697-720. Doi: https://doi.org/10.1111/j.1468-5957.1991.tb00233.x
Tserng, H. P., Chen, P. C., Huang, W. H., Lei, M. C., & Tran, Q. H. (2014). Prediction of default probability for construction firms using the logit model. Journal of Civil Engineering and Management, 20(2), 247-255. Doi: https://doi.org/10.3846/13923730.2013.801886
Van Wymeersch, C., Declerc, M., & Heins, B. (1992). Flux financiers et prévision de faillite: une analyse comportementale de l'entreprise. Brussels Economic Review, 136, 415-443.
Vukovic, B., Milutinovic, S., Milicevic, N. & Jaksic, D. (2020). Corporate Bankruptcy Prediction: Evidence from Wholesale Companies in the Western European countries. Ekonomický c̆asopis, 68(5), 477-498. Available at: https://www.researchgate.net/publication/340917901_Corporate_Bankruptcy_Prediction_E vidence_from_Wholesale_Companies_in_the_Western_European_Countries
Zavgren, C. (1983). The prediction of corporate failure: the state of the art. Journal of Accounting Literature, 2(1), 1-33.
Zenzerovic, R. (2011). Credit scoring models in estimating the creditworthiness of small and medium and big enterprises. Croatian Operational Research Review (CRORR), 2(1), 143-158. Available at: https://hrcak.srce.hr/96659
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. DOI: 10.2307/2490859
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/AnEkSub2200005K
primljen: 05.06.2022.
prihvaćen: 10.10.2022.
objavljen onlajn: 09.12.2022.
objavljen u SCIndeksu: 08.12.2022.

Povezani članci

Nema povezanih članaka