Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:16
  • preuzimanja u poslednjih 30 dana:14

Sadržaj

članak: 1 od 167  
Back povratak na rezultate
2021, vol. 25, br. 2, str. 56-63
Biotehnološka proizvodnja biljnih inokulanata na bazi azotofiksatora
Univerzitet u Novom Sadu, Tehnološki fakultet

e-adresapaj@tf.uns.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Novom Sadu, Tehnološki fakultet) (MPNTR - 451-03-68/2020-14/200134)
This research was supported by the by the Autonomous Province of Vojvodina, Provincial Secretariat for Higher Education and Scientific Research within the framework of the project 142-451-3243/2020-03.

Ključne reči: biološko fiksiranje azota; pripremne faze proizvodnje; kultivacija; izdvajanje i prečišćavanje; biomasa; formulacija
Sažetak
Azot je jedan od osnovnih elemenata neophodnih za rast i razvoj biljaka u pogledu sinteze DNK i proteina. Glavni rezervoar azota u prirodi predstavlja atmosfera, međutim inertna molekularna forma azota prisutna u vazduhu nije pogodna za usvajanje od strane biljaka. Stoga je neophodna transformacija molekularnog azota u NH4 + ili NO3 - jone. Ovaj proces je poznat kao biološko fiksiranje azota koje vrše slobodni ili simbiotski prokarioti - azotofiksatori ili diazotrofi. Potrebe biljaka za velikim količinama azota u zemljištu obično se rešavaju dodavanjem hemijskih đubriva na bazi azota. Međutim, procene su da samo 35% dodatog azota iz azotnih đubriva biva iskorišćeno od strane biljaka, dok preostalih 65% završava u atmosferi u vidu zagađujućih gasova (azotnih oksida), u podzemnim vodama ili u zemljištu dovodeći do degradacije njegovog kvaliteta usled smanjenja vrednosti pH. Stoga se biološko fiksiranje azota javlja kao moguće rešenje za održivo povećanje količine asimilabilnog azota u zemljištu. Glavne grupe prokariotskih azotofiksatora čine bakterije, arhea i cijanobakterije. Biomasa ovih prokariota mora biti proizvedena i formulisana na odgovarajući način primenom različitih biotehnoloških procesa kako bi se primenila u vidu biljnih inokulanata. Cilj ovog rada je sumiranje glavnih aspekata biotehnološke proizvodnje biljnih inokulanata na bazi bakterijskih azotofiksatora u pogledu pripremne faze proizvodnje, kultivacije i izdvajanja i prečišćavanja. Posebno se ističe poređenje sastava kultivacionih medijuma, uslova kultivacije, metoda separacije biomase i formulacije preparata. Ovaj rad daje koristan pregled dostupnih bioprocesnih rešenja za proizvodnju visoko efikasnih biljnih inokulanata, kao jednog od rešenja neophodnih za povećanje održivosti poljoprivredne proizvodnje.
Reference
Abd, E.D.A., Eweda, W.E., Zayed, M.S., Hassanein, M.K. (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Annals of Agricultural Sciences, 58(2): 111-118
Abd-Alla, M.H., El-Enany, A.E.E., Nafady, N.A., Khalaf, D.M., Morsy, F.M. (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 169(1): 49-58
Albareda, M., Rodríguez-Navarro, D.N., Camacho, M., Temprano, F.J. (2008) Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biology and Biochemistry, 40(11): 2771-2779
Ardakani, S.S., Heydari, A., Tayebi, L., Mohammadi, M. (2010) Promotion of Cotton Seedlings Growth Characteristics By Development and Use of New Bioformulations. International Journal of Botany, 6(2): 95-100
Argaw, A., Akuma, A. (2015) Rhizobium leguminosarum bv. viciae sp. inoculation improves the agronomic efficiency of N of common bean (Phaseolus vulgaris L.). Environmental Systems Research, 4(1)
Atieno, M., Wilson, N., Casteriano, A., Crossett, B., Lesueur, D., Deaker, R. (2018) Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Applied Microbiology and Biotechnology, 102(17): 7521-7539
Baena-Aristizábal, C.M., Foxwell, M., Wright, D., Villamizar-Rivero, L. (2019) Microencapsulation of Rhizobium leguminosarum bv. trifolii with guar gum: Preliminary approach using spray drying. Journal of Biotechnology, 302: 32-41
Bashan, Y., De-Bashan, L.E. (2015) Inoculant Preparation and Formulations for Azospirillum spp. u: Cassán F.D., Okon Y., Creus C.M. [ur.] Handbook for Azospirillum, Switzerland: Springer International Publishing, 469-485
Bashan, Y., Trejo, A., De-Bashan, L.E. (2011) Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biology and Fertility of Soils, 47(8): 963-969
Bekele, H., Dechassa, N., Argaw, A. (2013) Effects of different carbon and nitrogen sources in broth culture on the growth of Rhizobium leguminosarum bv. phaseoli and symbiotic effectiveness of haricot bean (Phaseoulus vulgaris L.) in Eastern Hararghe soils of Ethiopia. African Journal of Microbiology Research, 7(29): 3754-3761
Bergersen, F.J. (1961) The Growth Of Rhizobium in Synthetic Media. Australian Journal of Biological Sciences, 14(3): 349-360
Bhattacharjee, R.B., Singh, A., Mukhopadhyay, S.N. (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: Prospects and challenges. Applied Microbiology and Biotechnology, 80(2): 199-209
Cassán, F., Diaz-Zorita, M. (2016) Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103: 117-130
Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., Luna, V. (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45(1): 28-35
Chhetri, T.K., Subedee, B.R., Pant, B. (2019) Isolation, Identification and Production of Encapsulated Bradyrhizobium japonicum and Study on their Viability. Nepal Journal of Biotechnology, 7(1): 39-49
Cortés-Patiño, S., Bonilla, R.R. (2015) Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. African Journal of Biotechnology, 14(33): 2547-2553
Díaz-Zorita, M., Fernández-Canigia, M.V. (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45(1): 3-11
Din, M., Nelofer, R., Salman, M., Abdullah,, Khan, F.H., Khan, A., Ahmad, M., Jalil, F., Din, J.U., Khan, M. (2019) Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus Niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports, 22: e00323-e00323
Egamberdieva, D., Jabborova, D., Wirth, S.J., Alam, P., Alyemeni, M.N., Ahmad, P. (2018) Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.). Frontiers in Microbiology, 9: 1000-1000
Egamberdieva, D., Reckling, M., Wirth, S. (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78: 38-42
Franche, C., Lindström, K., Elmerich, C. (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1-2): 35-59
Fukami, J., Cerezini, P., Hungria, M. (2018) Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1): 73-73
García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J.A., Groppa, M.D. (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202: 21-29
Gonzalez, J.E., Hernandez, J., De-Bashan, L.E., Bashan, Y. (2018) Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Applied Soil Ecology, 129: 84-93
Gutiérrez-Rojas, I., Torres-Geraldo, A.B., Moreno-Sarmiento, N. (2011) Optimising carbon and nitrogen sources for Azotobacter chroococcum growth. African Journal of Biotechnology, 10(15): 2951-2958
Howieson, J.G., Dilworth, M.J. (2016) Working with Rhizobia. u: ACIAR Monograph, Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR), No. 173
Jnawali, A.D., Ojha, R.B., Marahatta, S. (2015) Role of Azotobacter in soil fertility and sustainability: A review. Advances in Plants & Agriculture Research, 2(6), 250-253
Joe, M.M., Karthikeyan, B., Chauhan, P.S., Shagol, C., Islam, M.R., Deiveekasundaram, M., Sa, T. (2012) Survival of Azospirillum brasilense flocculated cells in alginate and its inoculation effect on growth and yield of maize under water deficit conditions. European Journal of Soil Biology, 50: 198-206
Jokić, A., Pajčin, I., Lukić, N., Grahovac, J., Dodić, J., Rončević, Z., Šereš, Z. (2019) Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane. Chemical Engineering Research and Design, 150: 359-368
Jokić, A., Pajčin, I., Grahovac, J., Lukić, N., Ikonić, B., Nikolić, N., Vlajkov, V. (2020) Dynamic Modeling Using Artificial Neural Network of Bacillus Velezensis Broth Cross-Flow Microfiltration Enhanced by Air-Sparging and Turbulence Promoter. Membranes, 10(12): 372-372
Khavazi, K., Rejali, F., Seguin, P., Miransari, M. (2007) Effects of carrier, sterilisation method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzyme and Microbial Technology, 41(6-7): 780-784
Kizilkaya, R. (2009) Nitrogen fixation capacity of Azotobacter spp. Strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology, 30(1); 73-82
Kumawat, D.M., Sharma, M.K. (2015) Growth response of three indigenous Bradyrhizobium japonicum isolates against a few environmental factors. International Journal of Research in Pharmacy and Science, 5(2): 7-11
Larraburu, E.E., Bususcovich, A.C., Llorente, B.E. (2016) Azospirillum brasilense improves in vitro and ex vitro rooting-acclimatization of jojoba. Scientia Horticulturae, 209: 139-147
Lehmann, J., Joseph, S. (2009) Biochar for environmental management: An introduction. u: Lehmann J., Joseph S. [ur.] Biochar for Environmental Management: Science and Technology, London, UK-Sterling, USA: Earthscan Publisher, 1-9
Martyniuk, S., Oroń, J. (2011) Use of Potato Extract Broth for Culturing Root-Nodule Bacteria. Polish Journal of Microbiology, 60(4): 323-327
Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia-Plant Protection Directorate (2020) List of registered plant nutrition products for organic production. on June 26 th, 2020
Moreno-Galván, A., Rojas-Tapias, D.F., Bonilla, R. (2012) Development and evaluation of an alternative culture medium for mass cultivation of Azospirillum brasilense C16 using sequential statistical designs. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 13(2): 201-206
Mukhtar, H., Bashir, H., Nawaz, A., Haq, I. (2018) Optimization of growth conditions for Azotobacter species and their use as biofertilizer. Journal of Bacteriology & Mycology: Open Access, 6(5): 274-278
Niewiadomska, A., Sawicka, A. (2005) Diazotroph: Characteristics of the symbiotic legume: Rhizobium. u: Leguminous Plants in Polish Agriculture: Genetics, Breeding, Cultivating and Using, Materiały Konferencji Naukowej, Poznań, Wydaw, Poland, (in Polish)
Ona, O., Impe, J.V., Prinsen, E., Vanderleyden, J. (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiology Letters, 246(1): 125-132
Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M., Grahovac, J. (2020) Pepper bacterial spot control by Bacillus velezensis: Bioprocess solution. Microorganisms, 8(10), 1463
Pastor-Bueis, R., Jiménez-Gómez, A., Barquero, M., Mateos, P.F., González-Andrés, F. (2021) Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonized spaces inside the nodule. European Journal of Agronomy, 122, 126187
Pastor-Bueis, R., Sánchez-Cañizares, C., James, E.K., González-Andrés, F. (2019) Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Frontiers in Microbiology, 10, 2724
Phiromtan, M., Mala, T., Srinives, P. (2013) Effect of Various Carriers and Storage Temperatures on Survival of Azotobacter vinelandii NDD-CK-1 in Powder Inoculant. Modern Applied Science, 7(6): 81-89
Quiroga-Cubides, G., Díaz, A., Gómez, M. (2017) Adjustment and scale-up strategy of pilot liquid fermentation process of Azotobacter sp. International Journal of Bioengineering and Life Sciences, 11(4): 322-330
Rahmani, H.A., Saleh-Rastin, N., Khavazi, K., Asgharzadeh, A., Fewer, D., Kiani, S., Lindström, K. (2009) Selection of thermotolerant bradyrhizobial strains for nodulation of soybean (Glycine max L.) in semi-arid regions of Iran. World Journal of Microbiology and Biotechnology, 25: 591-600
Rodrı'guez-Navarro, D.N., Bellogı'n, R., Camacho, M., Daza, A., Medina, C., Ollero, F.J., Santamarı'a, C., Ruı'z-Saı,, Vinardell, J.M., Temprano, F.J. (2003) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. European Journal of Agronomy, 19(2): 299-309
Rojas-Tapias, D., Ortiz-Vera, M., Rivera, D., Kloepper, J., Bonilla, R. (2013) Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Universitas Scientiarum, 18(2): 129-139
Rojas-Tapias, D., Sierra, O.O., Botía, D.R., Bonilla, R. (2015) Preservation of Azotobacter chroococcum vegetative cells in dry polymers. Universitas Scientiarum, 20(2): 201-207
Schmidt, J., Messmer, M., Wilbois, K.P. (2015) Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-zone temperatures. Plant and Soil, 397(1-2): 411-445
Silva, M.T., Gasparotto, F., Lustri, B.M., Vasques, N.C., Yamagushi, N.U. (2020) Cultivation of Azospirillum brasilense in Vinasse and Potential Use in Fertigation. Journal of Agricultural Studies, 8(4): 726-734
Soumare, A., Diedhiou, A.G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., Kouisni, L. (2020) Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9(8): 1011-1011
Sumbul, A., Ansari, R.A., Rizvi, R., Mahmood, I. (2020) Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27, 3634-3640
Tewari, S., Pooniya, V., Sharma, S. (2020) Next generation bioformulation prepared by amalgamating Bradyrhizobium, cell free culture supernatant, and exopolysaccharides enhances the indigenous rhizospheric rhizobial population, nodulation, and productivity of pigeon pea. Applied Soil Ecology, 147, 103363
Trujillo-Roldán, M.A., Valdez-Cruz, N.A., Gonzalez-Monterrubio, C.F., Acevedo-Sánchez, E.V., Martínez-Salinas, C., García-Cabrera, R.I., Gamboa-Suasnavart, R.A., Marín-Palacio, L.D., Villegas, J., Blancas-Cabrera, A. (2013) Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Applied Microbiology and Biotechnology, 97(22): 9665-9674
van Oosten, M.J., di Stasio, E., Cirillo, V., Silletti, S., Ventorino, V., Pepe, O., Raimondi, G., Maggio, A. (2018) Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biology, 18(1): 205-205
Vogel, G.F., Martinkoski, L., von Hertwig, B.H., Grillo, J.F. (2013) Agronomic performance of Azospirillum brasilense on wheat crops. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias / Applied Research & Agrotechnology, 6(3): 111-119
Waswa, M.N., Karanja, N.K., Woomer, P.L., Mwenda, G.M. (2014) Identifying elite rhizobia for soybean (Glycine max) in Kenya. African Journal of Crop Science, 2(2): 60-66
Zeffa, D.M., Fantin, L.H., Koltun, A., de Oliveira, A.L.M., Nunes, M.P.B.A., Canteri, M.G., Gonçalves, L.S.A. (2020) Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: A meta-analysis of studies from 1987 to 2018. PeerJ, 8: e7905-e7905
 

O članku

jezik rada: engleski
vrsta rada: pregledni članak
DOI: 10.5937/jpea25-31071
primljen: 25.02.2021.
prihvaćen: 27.04.2021.
objavljen u SCIndeksu: 05.06.2021.