Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:21
  • preuzimanja u poslednjih 30 dana:16

Sadržaj

članak: 3 od 15  
Back povratak na rezultate
2016, vol. 50, br. 3, str. 96-106
Hemokini i hemokinski receptori u patogenezi multiple skleroze
Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča

e-adresaljiljanas@vin.bg.ac.rs
Ključne reči: multipla skleroza; hemokini; hemokinski receptori; centralni nervni sistem; leukociti; terapija
Sažetak
Multipla skleroza (MS) jeste hronična inflamatorna i autoimunska, demijelinizirajuća bolest centralnog nervnog sistema (CNS). Migracija autoreaktivnih T-limfocita u tkivo CNS jedan je od ključnih procesa koji karakterišu patogenezu MS i koji dovode do stvaranja inflamatornih demijelinizirajućih lezija u CNS. Hemokini predstavljaju familiju citokina. To su solubilni proteini malih molekulskih masa, koji ostvaruju dejstvo na ciljne ćelije vezivanjem za membranske hemokinske receptore. U dosadašnjim studijama na eksperimentalnom modelu MS i u eksperimentalnim kliničkim studijama utvrđeno je da važnu kariku u patogenezi MS čine brojni hemokini i hemokinski receptori, koje sintetišu ćelije CNS i različite populacije leukocita. Esencijalna uloga hemokina u patogenezi MS jeste da stimulišu migraciju perifernih leukocita u tkivo CNS. U kliničko-farmakološkim studijama pokazano je da uticaj na ekspresiju hemokina i hemokinskih receptora predstavlja jedan od mehanizama delovanja farmakoloških imunomodulatornih agenasa koji se primenjuju u lečenju MS. Teško je izdvojiti pojedinačni farmakološki agens koji trajno efikasno suprimira bolest, a jedan od razloga za to jeste kompleksnost mreže hemokina i hemokinskih receptora koju uzrokuje kako njihova brojnost, tako i višestruke funkcije koje imaju. Proizvodnja poboljšanih terapeutika u budućnosti omogućila bi da oni, delujući preko pojedinačnih komponenata složene mreže hemokina i hemokinskih receptora, selektivno utiču na migratorna svojstva populacija patogenih leukocita, bez narušavanja funkcija ostalih komponenata imunskog sistema.
Reference
Abbas, A.K., Lichtman, A.H. (2006) Basic immunology functions and disorders of the immune system. Philadelphia: WB Saunders Company
Abbott, N. J., Rönnbäck, L., Hansson, E. (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience, 7(1): 41-53
Alvarez, E., Piccio, L., Mikesell, R.J., Klawiter, E.C., Parks, B.J., Naismith, R.T., Cross, A.H. (2013) CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Multiple Sclerosis Journal, 19(9): 1204-1208
Ambrosini, E., Remoli, M.E., Giacomini, E., Rosicarelli, B., Serafini, B., Lande, R., Aloisi, F., Coccia, E.M. (2005) Astrocytes Produce Dendritic Cell-Attracting Chemokines In Vitro and in Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 64(8): 706-715
Ambrosini, E., Aloisi, F. (2004) Chemokines and Glial Cells: A Complex Network in the Central Nervous System. Neurochemical Research, 29(5): 1017-1038
Axelsson, M., Mattsson, N., Malmeström, C., Zetterberg, H., Lycke, J. (2013) The influence of disease duration, clinical course, and immunosuppressive therapy on the synthesis of intrathecal oligoclonal IgG bands in multiple sclerosis. Journal of Neuroimmunology, 264(1-2): 100-105
Banisadr, G., Frederick, T.J., Freitag, C., Ren, D., Jung, H., Miller, S.D., Miller, R.J. (2011) The role of CXCR4 signaling in the migration of transplanted oligodendrocyte progenitors into the cerebral white matter. Neurobiology of Disease, 44: 19-27
Blauth, K., Zhang, X., Chopra, M., Rogan, S., Markovic-Plese, S. (2015) The role of fractalkine (CX3CL1) in regulation of CD4+ cell migration to the central nervous system in patients with relapsing–remitting multiple sclerosis. Clinical Immunology, 157(2): 121-132
Bleul, C.C. (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). Journal of Experimental Medicine, 184(3): 1101-1109
Broux, B., Pannemans, K., Zhang, X., Markovic-Plese, S., Broekmans, T., Eijnde, B.O., van Wijmeersch, B., Somers, V., Geusens, P., van der Pol, S., van Horssen, J., Stinissen, P., Hellings, N. (2012) CX3CR1 drives cytotoxic CD4+CD28− T cells into the brain of multiple sclerosis patients. Journal of Autoimmunity, 38(1): 10-19
Carlson, T., Kroenke, M., Rao, P., Lane, T.E., Segal, B. (2008) The Th17–ELR+CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. Journal of Experimental Medicine, 205(4): 811-823
Charo, I.F., Ransohoff, R.M. (2006) The Many Roles of Chemokines and Chemokine Receptors in Inflammation. New England Journal of Medicine, 354(6): 610-621
Claes, N., Fraussen, J., Stinissen, P., Hupperts, R., Somers, V. (2015) B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions. Frontiers in Immunology, 6: 642
Cohen, M.E., Fainstein, N., Lavon, I., Ben-Hur, T. (2014) Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis. Stem Cell Research, 13(2): 227-239
Columba-Cabezas, S., Serafini, B., Ambrosini, E., Sanchez, M., Penna, G., Adorini, L., Aloisi, F. (2002) Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. Journal of Neuroimmunology, 130(1-2): 10-21
Compston, A., Coles, A. (2002) Multiple sclerosis. Lancet, 359(9313): 1221-31
Dhib-Jalbut, S., Sumandeep, S., Valenzuela, R., Ito, K., Patel, P., Rametta, M. (2013) Immune response during interferon beta-1b treatment in patients with multiple sclerosis who experienced relapses and those who were relapse-free in the START study. Journal of Neuroimmunology, 254(1-2): 131-140
Dincić, E., Zivković, M.D., Stanković, A., Obradović, D., Alavantić, D., Kostić, V.S., Raicević, R. (2006) Association of polymorphisms in CTLA-4, IL-1ra and IL-1 beta genes with multiple sclerosis in Serbian population. Journal of Neuroimmunology, vol. 177, br. 1-2, str. 146-150
Dinčić, E., Živković, M. (2012) Geni i multipla skleroza. Beograd: Naša knjiga
Dogan, R.-N.E., Elhofy, A., Karpus, W.J. (2008) Production of CCL2 by Central Nervous System Cells Regulates Development of Murine Experimental Autoimmune Encephalomyelitis through the Recruitment of TNF- and iNOS-Expressing Macrophages and Myeloid Dendritic Cells. Journal of Immunology, 180(11): 7376-7384
Elhofy, A., DePaolo, R. W., Lira, S.A., Lukacs, N.W., Karpus, W.J. (2009) Mice deficient for CCR6 fail to control chronic experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 213(1-2): 91-99
Farina, C., Weber, M.S., Meinl, E., Wekerle, H., Hohlfeld, R. (2005) Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurology, 4(9): 567-575
Frohman, E.M., Racke, M.K., Raine, C.S. (2006) Multiple Sclerosis — The Plaque and Its Pathogenesis. New England Journal of Medicine, 354(9): 942-955
Fukumoto, N., Shimaoka, T., Fujimura, H., Sakoda, S., Tanaka, M., Kita, T., Yonehara, S. (2004) Critical Roles of CXC Chemokine Ligand 16/Scavenger Receptor that Binds Phosphatidylserine and Oxidized Lipoprotein in the Pathogenesis of Both Acute and Adoptive Transfer Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 173(3): 1620-1627
Goazigo, A.R., van Steenwinckel, J., Rostène, W., Parsadaniantz, S.M. (2013) Current status of chemokines in the adult CNS. Progress in Neurobiology, 104: 67-92
Gu, S.M., Park, M.H., Yun, H.M., i dr. (2016) CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget, 7: 15382-93
Haas, J., Hug, A., Viehöver, A., Fritzsching, B., Falk, C.S., Filser, A., Vetter, T., Milkova, L., Korporal, M., Fritz, B., Storch-Hagenlocher, B., Krammer, P.H., Suri-Payer, E., Wildemann, B. (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. European journal of immunology, 35(11): 3343-52
Hagman, S., Raunio, M., Rossi, M., Dastidar, P., Elovaara, I. (2011) Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study. Journal of Neuroimmunology, 234(1-2): 141-147
Hao, J., Liu, R., Piao, W., Zhou, Q., Vollmer, T.L., Campagnolo, D.I., Xiang, R., la Cava, A., van Kaer, L., Shi, F. (2010) Central nervous system (CNS)–resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. Journal of Experimental Medicine, 207(9): 1907-1921
Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., Weaver, C.T. (2005) Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology, 6(11): 1123-1132
Høglund, R.A., Hestvik, A.L., Holmøy, T., Maghazachi, A.A. (2011) Expression and functional activity of chemokine receptors in glatiramer acetate-specific T cells isolated from multiple sclerosis patient receiving the drug glatiramer acetate. Human immunology / Hum. Immunol., 72(2): 124-34
Holman, D.W., Klein, R.S., Ransohoff, R.M. (2011) The blood–brain barrier, chemokines and multiple sclerosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(2): 220-230
Huang, D. (2006) The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB Journal, 20(7): 896-905
Huang, D., Wang, J., Kivisakk, P., Rollins, B.J., Ransohoff, R.M. (2001) Absence of Monocyte Chemoattractant Protein 1 in Mice Leads to Decreased Local Macrophage Recruitment and Antigen-Specific T Helper Cell Type 1 Immune Response in Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 193(6): 713-726
Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T.J., Yoshie, O. (1997) Identification and Molecular Characterization of Fractalkine Receptor CX3CR1, which Mediates Both Leukocyte Migration and Adhesion. Cell, 91(4): 521-530
IUIS (2002) Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res, 22: 1067-8
Izikson, L., Klein, R.S., Charo, I.F., Weiner, H.L., Luster, A.D. (2000) Resistance to Experimental Autoimmune Encephalomyelitis in Mice Lacking the Cc Chemokine Receptor (Ccr2). Journal of Experimental Medicine, 192(7): 1075-1080
Jalosinski, M., Karolczak, K., Mazurek, A., Glabinski, A. (2008) The effects of methylprednisolone and mitoxantrone on CCL5-induced migration of lymphocytes in multiple sclerosis. Acta Neurologica Scandinavica, 118(2): 120-125
Jatczak-Pawlik, I., Książek-Winiarek, D., Wojkowska, D., Jóźwiak, K., Jastrzębski, K., Pietruczuk, M., Głąbiński, A. (2016) The impact of multiple sclerosis relapse treatment on migration of effector T cells – Preliminary study. Neurologia i Neurochirurgia Polska, 50(3): 155-162
Karpus, W.J., Kennedy, K.J. (1997) MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol, 62: 681-7
Kastenbauer, S. (2003) CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. Journal of Neuroimmunology, 137(1-2): 210-217
Khademi, M., Kockum, I., Andersson, M.L., Iacobaeus, E., Brundin, L., Sellebjerg, F., Hillert, J., Piehl, F., Olsson, T. (2011) Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Multiple Sclerosis Journal, 17(3): 335-343
Kowarik, M.C., Cepok, S., Sellner, J., Grummel, V., Weber, M.S., Korn, T., Berthele, A., Hemmer, B. (2012) CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. Journal of Neuroinflammation, 9(1): 93
Krauthausen, M., Saxe, S., Zimmermann, J., Emrich, M., Heneka, M.T., Müller, M. (2014) CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. Journal of Neuroinflammation, 11(1): 109
Krumbholz, M. (2005) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 129(1): 200-211
Laborde, E., Macsata, R.W., Meng, F., Peterson, B.T., Robinson, L., Schow, S.R., Simon, R.J., Xu, H., Baba, K., Inagaki, H., Ishiwata, Y., Jomori, T., Matsumoto, Y., Miyachi, A., Nakamura, T. (2011) Discovery, Optimization, and Pharmacological Characterization of Novel Heteroaroylphenylureas Antagonists of C−C Chemokine Ligand 2 Function. Journal of Medicinal Chemistry, 54(6): 1667-1681
le Blanc, L.M.P., van Lieshout, A.W.T., Adema, G.J., van Riel, P.L.C.M., Verbeek, M.M., Radstake, T.R.D.J. (2006) CXCL16 is elevated in the cerebrospinal fluid versus serum and in inflammatory conditions with suspected and proved central nervous system involvement. Neuroscience Letters, 397(1-2): 145-148
Li, M., Ransohoff, R. (2008) Multiple roles of chemokine CXCL12 in the central nervous system: A migration from immunology to neurobiology. Progress in Neurobiology, 84(2): 116-131
Libbey, J.E., McCoy, L.L., Fujinami, R.S. (2007) Molecular Mimicry in Multiple Sclerosis. International Review of Neurobiology, 79: 127-47
Liston, A., Kohler, R.E., Townley, S., Haylock-Jacobs, S., Comerford, I., Caon, A.C., Webster, J., Harrison, J.M., Swann, J., Clark-Lewis, I., Korner, H., McColl, S.R. (2009) Inhibition of CCR6 Function Reduces the Severity of Experimental Autoimmune Encephalomyelitis via Effects on the Priming Phase of the Immune Response. Journal of Immunology, 182(5): 3121-3130
Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., Lassmann, H. (2000) Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann Neurol, 47(6): 707-17
Maciejewski-Lenoir, D., Chen, S., Feng, L., Maki, R., Bacon, K.B. (1999) Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR1- expressing microglia. J Immunol, 163: 1628-35
Maghazachi, A.A. (2003) G protein-coupled receptors in natural killer cells. Journal of Leukocyte Biology, 74(1): 16-24
Mahad, D.J., Ransohoff, R.M. (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Seminars in Immunology, 15(1): 23-32
McCandless, E.E., Budde, M., Lees, J.R., Dorsey, D., Lyng, E., Klein, R.S. (2009) IL-1R Signaling within the Central Nervous System Regulates CXCL12 Expression at the Blood-Brain Barrier and Disease Severity during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 183(1): 613-620
McCandless, E.E., Wang, Q., Woerner, B.M., Harper, J.M., Klein, R.S. (2006) CXCL12 Limits Inflammation by Localizing Mononuclear Infiltrates to the Perivascular Space during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 177(11): 8053-8064
McCandless, E.E., Piccio, L., Woerner, B. M., Schmidt, R.E., Rubin, J.B., Cross, A.H., Klein, R.S. (2008) Pathological Expression of CXCL12 at the Blood-Brain Barrier Correlates with Severity of Multiple Sclerosis. American Journal of Pathology, 172(3): 799-808
McGeachy, M.J., Stephens, L.A., Anderton, S.M. (2005) Natural Recovery and Protection from Autoimmune Encephalomyelitis: Contribution of CD4+CD25+ Regulatory Cells within the Central Nervous System. Journal of Immunology, 175(5): 3025-3032
Michałowska-Wender, G., Losy, J., Szczuciński, A., Biernacka-Łukanty, J., Wender, M. (2006) Effect of methylprednisolone treatment on expression of sPECAM-1 and CXCL10 chemokine in serum of MS patients. Pharmacol Rep, 58: 920-3
Mildner, A., Schmidt, H., Nitsche, M., Merkler, D., Hanisch, U., Mack, M., Heikenwalder, M., Brück, W., Priller, J., Prinz, M. (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neuroscience, 10(12): 1544-1553
Miljković, D., Stanojević, Ž., Momcilović, M., Odoardi, F., Flügel, A., Mostarica-Stojković, M. (2011) CXCL12 expression within the CNS contributes to the resistance against experimental autoimmune encephalomyelitis in Albino Oxford rats. Immunobiology, 216(9): 979-987
Mishra, M.K., Yong, V. W. (2016) Myeloid cells — targets of medication in multiple sclerosis. Nature Reviews Neurology, 12(9): 539-551
Murphy, C.A., Hoek, R.M., Wiekowski, M.T., Lira, S.A., Sedgwick, J.D. (2002) Interactions Between Hemopoietically Derived TNF and Central Nervous System-Resident Glial Chemokines Underlie Initiation of Autoimmune Inflammation in the Brain. Journal of Immunology, 169(12): 7054-7062
Nakajima, H., Fukuda, K., Doi, Y., Sugino, M., Kimura, F., Hanafusa, T., Ikemoto, T., Shimizu, A. (2004) Expression of Th1/Th2-Related Chemokine Receptors on Peripheral T Cells and Correlation with Clinical Disease Activity in Patients with Multiple Sclerosis. European Neurology, 52(3): 162-168
Ni, J., Zhu, Y., Zhong, X., Ding, Y., Hou, L., Tong, X., Tang, W., Ono, S., Yang, Y., Zuo, J. (2009) The chemokine receptor antagonist, TAK-779, decreased experimental autoimmune encephalomyelitis by reducing inflammatory cell migration into the central nervous system, without affecting T cell function. British Journal of Pharmacology, 158(8): 2046-2056
O`Connor, R.A., Prendergast, C.T., Sabatos, C.A., Lau, C.W.Z., Leech, M.D., Wraith, D.C., Anderton, S.M. (2008) Cutting Edge: Th1 Cells Facilitate the Entry of Th17 Cells to the Central Nervous System during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 181(6): 3750-3754
Olsson, T., Zhi, W.W., Höjeberg, B., Kostulas, V., Jiang, Y.P., Anderson, G., Ekre, H.P., Link, H. (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. Journal of Clinical Investigation, 86(3): 981-985
Pan, Y., Lloyd, C., Zhou, H., i dr. (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 387: 611-7
Pashenkov, M., Söderström, M., Link, H. (2003) Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. Journal of Neuroimmunology, 135(1-2): 154-160
Patel, J.R., McCandless, E.E., Dorsey, D., Klein, R.S. (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proceedings of the National Academy of Sciences, 107(24): 11062-11067
Peferoen, L.A.N., Vogel, D.Y.S., Ummenthum, K., Breur, M., Heijnen, P.D.A.M., Gerritsen, W.H., Peferoen-Baert, R.M.B., van der Valk, P., Dijkstra, C.D., Amor, S. (2015) Activation Status of Human Microglia Is Dependent on Lesion Formation Stage and Remyelination in Multiple Sclerosis. Journal of Neuropathology & Experimental Neurology, 74(1): 48-63
Qin, Y., Duquette, P., Zhang, Y., Talbot, P., Poole, R., Antel, J. (1998) Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. Journal of Clinical Investigation, 102(5): 1045-1050
Ransohoff, R.M., Hamilton, T.A., Tani, M., i dr. (1993) Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J, 7: 592-600
Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A., Lanzavecchia, A., Engelhardt, B., Sallusto, F. (2009) C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nature Immunology, 10(5): 514-523
Rodgers, J.M., Miller, S.D. (2012) Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale J Biol Med, 85: 447-68
Rossi, D., Zlotnik, A. (2000) The Biology of Chemokines and their Receptors. Annual Review of Immunology, 18(1): 217-242
Rudick, R.A., Goodkin, D.E., Jacobs, L.D., i dr. (1997) Impact of interferon beta-1a on neurologic disability in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology, 49: 358-63
Rumble, J.M., Huber, A.K., Krishnamoorthy, G., Srinivasan, A., Giles, D.A., Zhang, X., Wang, L., Segal, B.M. (2015) Neutrophil-related factors as biomarkers in EAE and MS. Journal of experimental medicine / J. Exp. Med., 212(1): 23-35
Salman, J., Ius, F., Knoefel, A.K., i dr. (2016) Association of higher CD4+ CD25high CD127low, FoxP3+, and IL- 2+ T cell frequencies early after lung transplantation with less chronic lung allograft dysfunction at two years. Am J Transplant, [Epub ahead of print]
Sato, W., Aranami, T., Yamamura, T. (2007) Cutting Edge: Human Th17 Cells Are Identified as Bearing CCR2+CCR5- Phenotype. Journal of Immunology, 178(12): 7525-7529
Schweingruber, N., Fischer, H.J., Fischer, L., Brandt, J.van den, Karabinskaya, A., Labi, V., Villunger, A., Kretzschmar, B., Huppke, P., Simons, M., Tuckermann, J.P., Flügel, A., Lühder, F., Reichardt, H.M. (2014) Chemokine-mediated redirection of T cells constitutes a critical mechanism of glucocorticoid therapy in autoimmune CNS responses. Acta Neuropathologica, 127(5): 713-729
Shi, F.-D., Takeda, K., Akira, S., Sarvetnick, N., Ljunggren, H.-G. (2000) IL-18 Directs Autoreactive T Cells and Promotes Autodestruction in the Central Nervous System Via Induction of IFN-  by NK Cells. Journal of Immunology, 165(6): 3099-3104
Shimizu, Y., Ota, K., Kubo, S., Kabasawa, C., Kobayashi, M., Ohashi, T., Uchiyama, S. (2011) Association of Th1/Th2-Related Chemokine Receptors in Peripheral T Cells with Disease Activity in Patients with Multiple Sclerosis and Neuromyelitis Optica. European Neurology, 66(2): 91-97
Sloka, J.S., Stefanelli, M. (2005) The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Multiple Sclerosis Journal, 11(4): 425-432
Steinbach, K., Piedavent, M., Bauer, S., Neumann, J.T., Friese, M.A. (2013) Neutrophils Amplify Autoimmune Central Nervous System Infiltrates by Maturing Local APCs. Journal of Immunology, 191(9): 4531-4539
Stojković, L., Stanković, A., Djurić, T., Dinčić, E., Alavantić, D., Živković, M. (2014) The gender-specific association of CXCL16 A181V gene polymorphism with susceptibility to multiple sclerosis, and its effects on PBMC mRNA and plasma soluble CXCL16 levels: preliminary findings. Journal of Neurology, 261(8): 1544-1551
Stojković, L., Djurić, T., Stanković, A., Dinčić, E., Stančić, O., Veljković, N., Alavantić, D., Živković, M. (2012) The association of V249I and T280M fractalkine receptor haplotypes with disease course of multiple sclerosis. Journal of Neuroimmunology, 245(1-2): 87-92
Sunnemark, D., Eltayeb, S., Nilsson, M., i dr. (2005) CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflammation, 2: 17
Tabata, S. (2005) Distribution and kinetics of SR-PSOX/CXCL16 and CXCR6 expression on human dendritic cell subsets and CD4+ T cells. Journal of Leukocyte Biology, 77(5): 777-786
Uzawa, A., Mori, M., Hayakawa, S., Masuda, S., Nomura, F., Kuwabara, S. (2010) Expression of chemokine receptors on peripheral blood lymphocytes in multiple sclerosis and neuromyelitis optica. BMC Neurology, 10(1)
van der Meer, P., Ulrich, A.M., Gonźalez-Scarano, F., Lavi, E. (2000) Immunohistochemical Analysis of CCR2, CCR3, CCR5, and CXCR4 in the Human Brain: Potential Mechanisms for HIV Dementia. Experimental and Molecular Pathology, 69(3): 192-201
Vukusic, S., Confavreux, C. (2007) Natural history of multiple sclerosis: risk factors and prognostic indicators. Curr Opin Neurol, 20(3): 269-74
Waisman, A., Hauptmann, J., Regen, T. (2015) The role of IL-17 in CNS diseases. Acta Neuropathologica, 129(5): 625-637
Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., Sakaguchi, S. (2008) CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science, 322(5899): 271-275
Yamazaki, T., Yang, X.O., Chung, Y., Fukunaga, A., Nurieva, R., Pappu, B., Martin-Orozco, N., Kang, H.S., Ma, L., Panopoulos, A.D., Craig, S., Watowich, S.S., Jetten, A.M., Tian, Q., Dong, C. (2008) CCR6 Regulates the Migration of Inflammatory and Regulatory T Cells. Journal of Immunology, 181(12): 8391-8401
Zang, Y.C.Q., Halder, J.B., Samanta, A.K., Hong, J., Rivera, V.M., Zhang, J.Z. (2001) Regulation of chemokine receptor CCR5 and production of RANTES and MIP-1α by interferon-β. Journal of Neuroimmunology, 112(1-2): 174-180
Zilkha-Falb, R., Kaushansky, N., Kawakami, N., Ben-Nun, A. (2016) Post-CNS-inflammation expression of CXCL12 promotes the endogenous myelin/neuronal repair capacity following spontaneous recovery from multiple sclerosis-like disease. Journal of Neuroinflammation, 13(1): 7