Metrika

  • citati u SCIndeksu: [2]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 5 od 11  
Back povratak na rezultate
2009, vol. 59, br. 1, str. 41-51
Novo viđenje Euler-Bernoulli jednačine
Univerzitet u Beogradu, Institut 'Mihajlo Pupin'
Sažetak
Posebna pažnja je posvećena kretanju elastičnih linkova u robotskoj konfiguraciji. Elastična deformacija je dinamička veličina koja zavisi od ukupne dinamike kretanja robotskog sistema. Euler-Bernoulli jednačinu (koja je dugi niz godina korišćena u literaturi) treba proširiti prema zahtevima složenosti kretanja elastičnih robotskih sistema. Euler-Bernoulli jednačini (zasnovano na postojećim zakonima dinamike) treba dodati sve sile (inercijalne, Coriolisove, centrifugalne, gravitacione, sile okoline, poremećajne kao i sile sprezanja između prisutnih modova) koje učestvuju u formiranju momenta elastičnosti posmatranog moda. To uslovljava različitost u strukturi Euler-Bernoullijevih jednačina za svaki mod. Matrica krutosti je puna matrica kao i matrica prigušenja. Matematički model motora takodje obuhvata kuplovanje izmedju sila elastičnosti. Partikularni integral koji je definisao Daniel Bernoulli treba proširiti stacionarnim karakterom elastične deformacije za bilo koju tačku posmatranog moda uzrokovano prisutnim silama. Opšta forma elastične linije mehanizma direktno proističe iz dinamike kretanja sistema i ne može biti opisana sa jednom skalarnom jednačinom već sa tri jednačine za poziciju i tri jednačine za orjentaciju svake tačke na toj elastičnoj liniji. Simulacioni rezultati su predstavljeni za odabrani primer robota uvodeći simulaciono prisustvo elastičnosti prenosnika i linka (dva moda) kao i dinamiku sila okoline.
Reference
Bayo, E. (1987) A finite-element approach to control the end-point motion of a single-link flexible robot. J of Robotic Systems, vol. 4, br. 1, str. 63-75
Book,, Maizza-Neto,, Whitney (1975) Feedback control of two beam, two joint systems with distributed flexibility. Trans ASME J. Dyn. Syst. Meas. And Control, 97 G(4), 424-431
Book, W.J., Majette, M. (1983) Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques. Trans ASME J. Dyn. Syst. Meas. And Control, 105, 245-254
Cheong, J., Chung, W., Youm, Y. (2000) Bandwidth modulation of rigid subsystem for the class of flexible robots. u: Conference on Robotics &Automation, San Francisco, April, Proceedings, 1478-1483
Cheong, J., Chung, W.K., Youm, Y. (2002) Pid composite controller and its tuning for flexible link robots. u: IEEE/RSJ, Int. Conference on Intelligent Robots and Systems EPFL, Lausanne, October, Proceedings
de Luca, A. (2000) Feedforward/feedback laws for the control of flexible robots. u: IEEE Int. Conf. on robotics and automation, April, str. 233-241
de Luka, A., Siciliano, B. (1991) Closed-form dynamic model of planar multilink lightweight robots. IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, (July/August), 826-839
Despotović, ZV., Stojiljković, Z. (2007) Power converter control circuits for two-mass vibratory conveying system with electromagnetic drive: Simulations and experimental results. IEEE Translation on Industrial Electronics, 54(1): 453-466
Đurić, A.M., Elmaraghy, W.H., Elbeheirye, M. (2004) Unified integrated modeling of robotic systems. u: NRC International Workshop on Advanced Manufacturing, June, London, Canada
Đurić, A.M., Elmaraghy, W.H. (2007) Unified reconfigurable robots Jacobian. u: Int. Conf. on Changeable (II), Agile, Reconfigurable and Virtual Production, str. 811-823
Filipovic, M., Vukobratovic, M. (2008) Complement of source equation of elastic line. Journal of Intelligent & Robotic Systems, Volume 52, No 2, (June), 233-261
Filipovic, M., Vukobratovic, M.K. (2008) Expansion of source equation of elastic line. Robotica, vol. 26, str. 739-751
Filipović, M., Vukobratović, M. (2005) Modeling of flexible robotic systems, computer as a tool. u: EUROCON the international conference, Belgrade, Serbia and Montenegro, 21-24 Nov. 2005, vol. 2, str. 1196-1199
Filipović, M., Vukobratović, M. (2006) Contribution to modeling of elastic robotic systems. Engineering & Automation Problems International Journal, September 23, vol. 5, br. 1, str. 22-35
Filipović, M., Potkonjak, V., Vukobratović, M. (2007) Elastičnost u humanoidnoj robotici. Scientific Technical Review, vol. 57, br. 1, str. 24-33
Ghorbel, F., Spong, M.W. (1992) Adaptive integral manifold control of flexible joint robot manipulators. u: IEEE International conference on robotics and automation, Nice, France, May
Hughes, P.C. (1977) Dynamic of a flexible manipulator arm for the space shuttle. u: AIAA Astrodynamics Conference, Wyoming, USA: Grand Teton National Park
Jang, H., Krishnan, H., Ang, M.H.Jr. (1997) A simple rest-to-rest control command for a flexible link robot. u: IEEE Int. Conf. on Robotics and Automation, 3312-3317
Khadem, S.E., Pirmohammadi, A.A. (2003) Analytical development of dynamic equations of motion for a three-dimensional flexible link manipulator with revolute and prismatic joints. IEEE Transactions on Systems, Man and Cybernetics, part B, Cybernetics, vol. 33, br. 2, 237-249
Kim, J.S., Siuzuki, K., Konno, A. (1996) Force control of constrained flexible manipulators. u: International Conference on Robotics and Automation, April, 635-640
Krishnan, H. (1995) An approach to regulation of contact force and position in flexible-link constrained robots. Vancouver: IEEE
Low, K.H. (1987) A systematic formulation of dynamic equations for robot manipulators with elastic links. J Robotic Systems, Vol. 4, No. 3, June, 435-456
Low, K.H., Vidyasagar, M., Lagrangian, A. (1988) Formulation of the dynamic model for flexible manipulator systems. ASME J Dynamic Systems, Measurement, and Control, vol. 110, br. 2, (Jun), str. 175-181
Matsuno, F., Sakawa, Y. (1994) Modeling and quasistatic hybrid position/force control of constrained planar two-link flexible manipulators. IEEE Transactions on Robotics and Automation, vol. 10., No 3, June
Matsuno, F., Kanzawa, T. (1996) Robust control of coupled bending and torsional vibrations and contact force of a constrained flexible arm. u: International Conference on Robotics and Automation, 2444-2449
Matsuno, F., Wakashiro, K., Ikeda, M. (1994) Force control of a flexible arm. u: International Conference on Robotics and Automation, 2107-2112
Meirovitch, L. (1967) Analytical methods in vibrations. New York: Macmillan
Moallem, M., Khorasani, K., Patel, V.R. (1996) Tip position tracking of flexible multi-link manipulators, an integral manifold approach. u: International Conference on Robotics and Automation, (April), 2432-2436
Potkonjak, V., Vukobratović, M. (1999) Dynamics in contact tasks in robotics, Part I: General model of robot interacting with environment. Mechanism and Machine Theory, vol. 33
Spong, M.W. (1987) Modeling and control of elastic joint robots. ASME Journal of Dynamic Systems Measurement and Control, 109, str. 310-319
Spong, M.W. (1989) On the force control problem for flexible joint manipulators. IEEE Transactions on Automatic Control, January, vol. 34, br. 1
Strutt, J.W. (1894-1896) Lord Rayleigh: Theory of sound. London and New York: Mc. Millan & Co, paragraph 186, second publish
Timoshenko, S., Young, H.D. (1955) Vibration problems in engineering. New York: D. Van Nostrand Company
Vukobratović, M.K., Matijević, V., Potkonjak, V. (1998) Control of robots with elastic joints interacting with dynamic environment. Journal of intelligent & robotic systems, 23(1): 87-100
Yim, W. (1996) Modified nonlinear predictive control of elastic manipulators. u: International Conference on Robotics and Automation, April, 2097-2102
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
objavljen u SCIndeksu: 13.10.2009.