- citati u SCIndeksu: [2]
- citati u CrossRef-u:[2]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:6
- preuzimanja u poslednjih 30 dana:4
|
|
2019, vol. 48, br. 2, str. 12-29
|
Postoje li makroekonomski prediktori za Point-in-Time PD? Rezultati na osnovu baze podataka stopa neizmirenja Udruženja banaka Srbije
Are there macroeconomic predictors of Point-in-Time PD? Results based on default rate data of the Association of Serbian Banks
Sažetak
Interni modeli koje banke koriste za ocenu kreditne sposobnosti svojih dužnika po pravilu daju ocene verovatnoće neizmirenja koje obuhvataju čitav poslovni ciklus. Za potrebe primene MSFI 9 neophodne su, međutim, ocene verovatnoće neizmirenja za konkretan vremenski trenutak, kao i uključivanja različitih makroekonomskih scenarija. Ovakve ocene zasnovane su prevashodno na uračunavanju efekata poslovnog ciklusa, te stoga podrazumevaju postojanje dokazive veze između makroekonomskih pokazatelja i ostvarenih stopa neizmirenja. U ovom radu analiziramo da li ovakva veza postoji na podacima banaka koje posluju u Srbiji. Koristimo nekoliko različitih pristupa za utvrđivanje ove veze - linearnu regresiju, autoregresioni proces, model sa korekcijom greške, pristup statičkih i dinamičkih panela, kao i dva Bayes-ova pristupa. Na čitavom uzorku model sa korekcijom greške pokazuje najbolje performanse i daje faktore prihvatljive ekonomske intuicije. Podaci po tipu proizvoda daju nešto manje pouzdane rezultate, što je delimično uslovljeno dominantnim uticajem segmenta malih i srednjih preduzeća u ukupnim stopama neizmirenja. Kao najrobustniji prediktori stopa neizmirenja izdvajaju se docnje u promenama ovih stopa, referentna stopa Narodne banke Srbije i stopa rasta bruto domaćeg proizvoda.
Abstract
Internal models that banks use to assess the creditworthiness of their borrowers, as a rule, give estimates of the probability of default that cover the entire business cycle. For the purposes of applying IFRS 9, however, estimates of the probability of default for a specific moment, as well as the inclusion of different macroeconomic scenarios are required. Such estimates are based primarily on the calculation of the effects of the business cycle, and therefore involve the existence of a provable link between macroeconomic indicators and realized default rates. In this paper we analyze whether this relationship exists using the data of banks operating in Serbia. We use several different approaches to determine this link: linear regression, autoregressive process, error correction model, static and dynamic panel-data models, as well as two Bayesian approaches. On the whole sample, the error correction model shows the best performance and gives the factors of acceptable economic intuition. When data are divided by the type of product, we obtain somewhat less reliable results, which is partly due to the dominant influence of the SME segment in the total default rates. As the most robust predictors of default rates we identify the lagged differences in these rates, the reference rate of the National Bank of Serbia and the growth rate of gross domestic product.
|
|
|
Reference
|
|
Ali, A., Daly, K. (2010) Macroeconomic determinants of credit risk: Recent evidence from a cross country study. International Review of Financial Analysis, 19(3): 165-171
|
1
|
Altman, E.I., Brady, B., Resti, A., Sironi, A. (2005) The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications. Journal of Business, 78(6): 2203-2228, https://www.jstor.org/stable/10.1086/497044
|
|
Altman, E.I., Resti, A., Sironi, A. (2004) Default Recovery Rates in Credit Risk Modelling: A Review of the Literature and Empirical Evidence. Economic Notes, 33(2): 183-208
|
|
Bellotti, T., Crook, J. (2009) Credit scoring with macroeconomic variables using survival analysis. Journal of the Operational Research Society, 60(12): 1699-1707
|
|
Bruche, M., González-Aguado, C. (2010) Recovery rates, default probabilities, and the credit cycle. Journal of Banking & Finance, 34(4): 754-764
|
|
Duffie, D., Eckner, A., Horel, G., Saita, L. (2009) Frailty Correlated Default. Journal of Finance, 64(5): 2089-2123
|
|
Figlewski, S., Frydman, H., Liang, W. (2012) Modeling the effect of macroeconomic factors on corporate default and credit rating transitions. International Review of Economics & Finance, 21(1): 87-105
|
|
Fons, J.S. (1991) An Approach to Forecasting Default Rates. Moody's Special Report, August
|
1
|
Fridson, M. (1991) Everything You Ever Wanted to Know about Default Rates: Extra Credit, Merrill Lynch High Yield Strategy. July/August: 4-14
|
1
|
Magnus, J.R., Powell, O., Prüfer, P. (2010) A comparison of two model averaging techniques with an application to growth empirics. Journal of Econometrics, 154(2): 139-153, https://EconPapers.repec.org/RePEc
|
|
Simons, D., Rolwes, F. (2008) Macroeconomic Default Modeling and Stress Testing. De Nederlandsche Bank, Working paper, https://www.semanticscholar.org/paper/Macroeconomic-Default-Modeling-and-Stress-Testing-Simons-Rolwes/5db01c384d 451c91f5224c50731ceedb0b29821e
|
|
|
|