Journal of Applied Engineering Science
kako citirati ovaj članak
podeli ovaj članak


  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4


članak: 3 od 13  
Back povratak na rezultate
2018, vol. 16, br. 2, str. 242-245
Principles of designing well separators
(naslov ne postoji na srpskom)
Siberian Federal University, Krasnoyarsk, Russia

The research was supported by the Federal Target Program 'Research and development on the priority directionsof development of the scientific technological complexof Russia for 2014-2020'. Action 1.3 'Carrying outthe applied research directed towards the creation ofadvanced scientific- technological potential for the developmentof branches of economy' (unique identifier ofapplied researches (project) RFMEFI57817X0236).

Ključne reči: vortex tube; separation; designing; well separator; wellbore filter
(ne postoji na srpskom)
Vortex motion is effectively used in the development of wellbore filter designs. Further development of the principles of such design requires the development of some principles based on experimental observations and computer modeling. A constructive analogy between the wellbore filter and the Ranque vortex tube is shown. The results of experimental and theoretical studies of the vortex tube are applied as a basis for designing a well separator. Recommendations are formulated regarding the radius of the inner branch pipe of the downhole filter placed in the body. Approaches are discussed when choosing the length of the working section of the well separator, as well as the choice of the shape of the input cochlear, the size of the outlet diaphragm, and the shape of the sand suspension window.
*** Presentation of the LAKOS downhole filter. available at: https://www.youtube.com/watch?v=GWMFgiWSfE0
Abramov, V.V., Afanasov, V.I., Lunev, A.S., Shakhmin, A.M., Fayziev, A.M. (2015) Well sand separator. Patent RF 156936
Afanasov, V.I., Abramov, V.V., Miroshnikov, R.S., Gaevsky, V.N., Dunaeva, S.P. (2018) Vortex tube in well separators. IOP Conference Series: Materials Science and Engineering, 327: 022071
Alekhin, V., Bianco, V., Khait, A., Noskov, A. (2015) Numerical investigation of a double-circuit Ranque-Hilsch vortex tube. International Journal of Thermal Sciences, 89: 272-282
Bovand, M., Valipour, M.S., Eiamsa-ard, S., Tamayol, A. (2014) Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 50: 98-107
Broun, G.Z., Roshko, A. (1974) On density effect and large structure in turbulent mixing lauers. I. Fluid Mech, vol. 64, pp. 778-816
Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G. (2012) MWH's water treatment: Principles and design. Third Edition, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118131473
Edling, R.I., Barfaield, B.I., Haan, C.I. (1975) Vortex velocity production with emphasis directed toward vortex tube sediment trap design. Pap ASAE for Anny. Meet, n. 11, Pap 75-2548, p. 25
Feodorov, A.B., Afanasov, V.I., Miroshnikov, R.S., Bogachev, V.V. (2017) Concept of modernization of input device of oil and gas separator. IOP Conference Series: Earth and Environmental Science, 87: 082020
Fröhlingsdorf, W., Unger, H. (1999) Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer, 42(3): 415-422
Gutsol, A.F. (1997) Effekt Ranka. Uspekhi Fizicheskih Nauk, 167(6): 665
Iliessu, M.S., Ciosan, G.D., Avellan, F.A. (2008) Analysis of the cavitating draft tube vortex in a Francis turbine using particle velocimetry measurements in two-phase flow. J. of Fluids Engineering, vol. 130, p. 10
Kazantseva, O.V., Piralishvili, Sh.A., Fuzeeva, A.A. (2005) Numerical Simulation of Swirling Flows in Vortex Tubes. High Temperature, 43(4): 608-613
Kurosaka, M. (1993) Acoustik streminq in swirlinq fl ow and Ranque - Hilsh (Vortex tube) effect. I. Fluid Sci, vol. 124, pp. 139-172
Lebedinskii, K.V., Kurnosov, N.E., Nikolotov, A.A., Alekseev, D.P. (2015) Ionization of Air in a Ranque-Hilsch Vortex Tube and the Method of Obtaining Uni- and Bipolar Ionization. Journal of Engineering Physics and Thermophysics, 88(6): 1476-1482
Lindestrom-Lang, C.U. (1965) An experimental study of the tangentional velocity profile on Ranque-Hilsh vortex tube. Riso Report, n 116. pp. 2-43
Merkulov, A.P. (1969) The vortex tube and its usage in technic. Moscow: Mashnostroenie, pp. 8-16
Michałek, W.R., Kuerten, J.G.M., Zeegers, J.C.H., Liew, R. (2015) LES of the ranque-hilsch vortex tube. ERCOFTAC Series, 20, pp. 679-686
Piralishvili, S.A., Polyaev, V.M., Sergeev, M.N. (2000) The vortex tube: Research, theory, concepts. Moscow: Energomash UNPC
Rafiee, S.E., Sadeghiazad, M.B.M. (2016) Three-dimensional computational prediction of vortex separation phenomenon inside the ranque-hilsch vortex tube. Aviation, 20(1): 21-31
Ranque, M.G. (1933) Experiences sur la detente giratoire avec production simulanees d'un echappementd'airchaud et d'airfroid. Journal de Physique et le Radium, in French, Supplement, vol. 7, n. 4, pp. 112-114
Shults-Grunow, F. (1950) Die Wirkungweise des Ranque - wirbelrohres. Kaltetechnik, n 2, pp. 273-284
Sibulkin, M. (1962) Unsteady, viscous, circular flow Part 3. Application to the Ranque-Hilsch vortex tube. Journal of Fluid Mechanics, 12(02): 269
Singh, P.K. (2004) An experimental performance evaluation of vortex tube. I.E.(i) J.-MC.-January, vol.84, pp. 149-153
Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D. (1984) A similarity relation for energy separation in a vortex tube. International Journal of Heat and Mass Transfer, 27(6): 911-920
Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D. (1983) An investigation of energy separation in a vortex tube. International Journal of Heat and Mass Transfer, 26(3): 341-348
Vabistas, G.U. (1987) Tangentional velocity and static pressure distributions in vortex chambers. AIAA, vol. 25(1), n.8, pp. 174-286
Xue, Y., Arjomandi, M., Kelso, R. (2012) Experimental study of the flow structure in a counter flow Ranque-Hilsch vortex tube. International Journal of Heat and Mass Transfer, 55(21-22): 5853-5860
Xue, Y., Arjomandi, M., Kelso, R. (2013) Experimental study of the thermal separation in a vortex tube. Experimental Thermal and Fluid Science, 46: 175-182

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/jaes16-17327
objavljen u SCIndeksu: 26.06.2018.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka