## Akcije

kako citirati ovaj članak
podeli ovaj članak

## Metrika

• citati u SCIndeksu: 0
• citati u CrossRef-u:
• posete u poslednjih 30 dana:7
• preuzimanja u poslednjih 30 dana:5

 članak: 3 od 18
 povratak na rezultate
2018, vol. 42, br. 1, str. 29-39
Steiner Harary index
(naslov ne postoji na srpskom)
Department of Mathematics, Qinghai Normal University, Xining, Qinghai, China

Projekat:
Project by the National Science Foundation of China 11601254, 11551001, 11661068, 11161037, 11461054
Project by Science Found of Qinghai Province Nos. 2016-ZJ-948Q, 2014-ZJ-907, and 2014-ZJ-721

Ključne reči: distance; Steiner distance; Harary index; Steiner Harary k-index
Sažetak
(ne postoji na srpskom)
The P Harary index H(G) of a connected graphs G is defined as H(G) = Ʃu,ve2V (G) 1 dG(u,v) where dG(u, v) is the distance between vertices u and v of G. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and S ⊆ V (G), the Steiner distance dG(S) of the vertices of S is the minimum size of all connected subgraphs whose vertex set contain S. Recently, Furtula, Gutman, and Katanić introduced the concept of Steiner Harary index and give its chemical applications. The k-center Steiner Harary index SHk(G) of G is defined by SHk(G) = Ʃ S⊆V (G), |S|=k 1 dG(S) . Expressions for SHk for some special graphs are obtained. We also give sharp upper and lower bounds of SHk of a connected graph, and establish some of its properties in the case of trees.
 Reference Ali, P., Dankelmann, P., Mukwembi, S. (2012) Upper bounds on the Steiner diameter of a graph. Discrete Applied Mathematics, 160(12): 1845-1850 Balaban, A.T. (2016) The Harary index of a graph. MATCH Commun Math. Comput. Chem., 243-245; 75 Bondy, J.A., Murty, U.S.R. (2008) Graph Theory. London: Springer Nature Buckley, F., Harary, F. (1990) Distance in Graphs. Redwood: Addison-Wesley Cáceres, J., Márquez, A., Puertas, M.L. (2008) Steiner distance and convexity in graphs. European Journal of Combinatorics, 29(3): 726-736 Chartrand, G., Oellermann, O.R., Tian, S., Zou, H.B. (1989) Steiner distance in graphs. Časopis Pest. Mat, 114, 399-410 Dankelmann, P., Entringer, R. (2000) Average distance, minimum degree, and spanning trees. Journal of Graph Theory, 33(1): 1-13 Dankelmann, P., Oellermann, O.R., Swart, H.C. (1996) The average Steiner distance of a graph. Journal of Graph Theory, 22(1): 15-22 Dobrynin, A.A., Entringer, R., Gutman, I. (2001) Wiener index of trees: Theory and applications. Acta Applicandae Mathematicae, 66(3): 211-249 Entringer, R.C., Jackson, D.E., Snyder, D.A. (1976) Distance in graphs. Czech. Math. J., 283-296; 26 Furtula, B., Gutman, I., Katanić, T.V. (2016) center Harary index and its applications. Iranian J. Math. Chem., 7(1): 61-68 Garey, M.R., Johnson, D.C. (1979) Computer and intractability: A guide to the theory of NP-completeness. San Francisco, CA, itd: W.H. Freeman Publishing Goddard, W., Oellermann, O.R. (2010) Distance in Graphs. u: Dehmer, Matthias [ur.] Structural Analysis of Complex Networks, Boston: Springer Nature, str. 49-72 Gutman, I., Klavžar, S., Mohar, B. (1997) Fifty years of the Wiener index. MATCH Commun Math. Comput. Chem, 35, 1-159 Gutman, I., Li, X., Mao, Y. (2016) The Steiner Wiener index of a graph. Discussiones Mathematicae Graph Theory, 36(2): 455 Gutman, I., Furtula, B., Li, X. (2015) Multicenter Wiener indices and their applications. Journal of the Serbian Chemical Society, 80(8): 1009-1017 Gutman, I., Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Berlin, Heidelberg: Springer Nature Li, X., Mao, Y., Gutman, I. Inverse problem on the Steiner Wiener index. Discuss. Math. Graph Theory, in press Li, X., Fan, Y. (2015) The connectivity and the Harary index of a graph. Discrete Applied Mathematics, 181: 167-173 Lučić, B., Miličević, A., Nikolić, S., Trinajstić, N. (2002) Harary index-twelve years later. Croat. Chem. Acta, 847-868; 75 Mao, Y., Wang, Z., Gutman, I. (2016) Steiner Wiener index of graph products. Trans. Combin, 5(3): 39-50 Mao, Y., Wang, Z., Xiao, Y., Ye, C. Steiner Wiener index and connectivity of graphs. Utilitas Math, in press Mao, Y., Wang, Z., Gutman, I., Klobucar, A. (2017) Steiner Degree Distance. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 78, br. 1, str. 221-230 Mao, Y., Wang, Z., Gutman, I., Li, H. (2017) Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs. Discrete Applied Mathematics, 219: 167-175 Oellermann, O.R., Tian, S. (1990) Steiner centers in graphs. Journal of Graph Theory, 14(5): 585-597 Rouvray, D.H. (2002) Harry in the Limelight: The Life and Times of Harry Wiener. u: Topology in Chemistry, Elsevier BV, str. 1-15 Rouvray, D.H. (2002) The Rich Legacy of Half a Century of the Wiener Index. u: Topology in Chemistry, Elsevier BV, str. 16-37 Wiener, H. (1947) Structural determination of paraffin boiling points. J Am Chem Soc, 69, 17-20 Xu, K., Das, K.C., Trinajstić, N. (2015) The Harary Index of a Graph. Heidelberg: Springer Xu, K., Liu, M., Das, K.C., Gutman, I., Furtula, B.A. (2014) survey on graphs extremal with respect to distance-based topological indices. MATCH Commun. Math. Comput. Chem., 461-508; 71