## Akcije

kako citirati ovaj članak
podeli ovaj članak

## Metrika

• citati u SCIndeksu:
• citati u CrossRef-u:
• posete u poslednjih 30 dana:6
• preuzimanja u poslednjih 30 dana:3

 članak: 5 od 18
 povratak na rezultate
2015, vol. 39, br. 2, str. 155-171
Clusters and various versions of wiener-type invariants
(naslov ne postoji na srpskom)
bDepartment of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

Projekat:
Center of Excellence of Algebraic Hyper-structures and its Applications of Tarbiat Modares University (CEAHA)

Ključne reči: distance; topological index; graph product
Sažetak
(ne postoji na srpskom)
The Wiener type invariant W(λ)(G) of a simple connected graph G is defined as the sum of the terms d(u, ν ׀G)λ over all unordered pairs {u,ν} of vertices of G, where d(u, ν ׀G)λ denotes the distance between the vertices u and v in G and λ is an arbitrary real number. The cluster G1{G2} of a graph G1 and a rooted graph G2 is the graph obtained by taking one copy of G1 and |V (G1)| copies of G2, and by identifying the root vertex of the i-th copy of G2 with the i-th vertex of G1, for i = 1; 2; … ; |V (G1)|. In this paper, we study the behavior of three versions of Wiener type invariant under the cluster product. Results are applied to compute several distance-based topological invariants of bristled and bridge graphs by specializing components in clusters.
 Reference Azari, M., Iranmanesh, A. (2014) The second edge-Wiener index of some composite graphs, Miskolc. Math. Notes, 15(2); 305-316 Azari, M., Iranmanesh, A. (2011) Computation of the edge Wiener indices of the sum of graphs. Ars Combin, 113-128; 100 Azari, M., Iranmanesh, A., Tehraniana, A. (2013) Two topological indices of three chemical structures. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 69, br. 1, str. 69-86 Azari, M., Iranmanesh, A. (2013) Computing the eccentric-distance sum for graph operations. Discrete Applied Mathematics, 161(18): 2827-2840 Dankelmann, P., Gutman, I., Mukwembi, S., Swart, H.C. (2009) The edge-Wiener index of a graph. Discrete Mathematics, 309(10): 3452-3457 Darafsheh, M.R., Khalifeh, M.H. (2011) Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer. Ars Combin, 289-298; 100 Došlić, T. (2005) Splices, links and their degree-weighted Wiener polynomials. Graph Theory Notes N. Y., 47-55; 48 Došlić, T. (2008) Vertex-weighted Wiener polynomials for composite graphs. Ars Math. Contemp., 1(1): 66-80 Furtula, B., Gutman, I., Lin, H. (2013) More trees with all degrees odd having extremal Wiener index. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 70, br. 1, str. 293-296 Gutman, I., Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Berlin: Springer Gutman, I., Vidović, D., Popović, L. (1998) On graph representation of organic molecules: Cayley's plerograms vs. his kenograms. Journal of the Chemical Society Faraday Transactions, 94, 857-860 Gutman, I. (1997) A property of the Wiener number and its modifications. Indian Journal of Chemistry, A: Inorganic, Bio-inorganic, Physical, Theoretical & Analytical Chemistry, 36(2): 128-132 Gutman, I., Yeh, Y.N. (1994) On the sum of all distances in composite graphs. Discrete Mathematics, 135(1-3): 359 Hossein-Zadeh, S., Hamzeh, A., Ashrafi, A.R. (2009) Wiener-type invariants of some graph operations. Filomat, vol. 23, br. 3, str. 103-113 Iranmanesh, A., Gutman, I., Khormali, O., Mahmiani, A. (2009) The edge versions of the Wiener index. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 61, br. 3, str. 663-672 Iranmanesh, A., Kafrani, A.S., Khormali, O. (2011) A new version of hyper-Wiener index. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 65, br. 1, str. 113-122 Iranmanesh, A., Azari, M. (2015) Edge-Wiener Descriptors in Chemical Graph Theory: A Survey. Current Organic Chemistry, 19(3): 219-239 Khalifeh, M.H., Yousefi-Azari, H., Ashrafi, A.R., Wagner, S.G. (2009) Some new results on distance-based graph invariants. European Journal of Combinatorics, 30(5): 1149-1163 Klein, D.J., Gutman, I. (1999) Wiener-number-related sequences. Journal of chemical information and computer sciences, 39(3): 534-536 Klein, D.J., Lukovits, I., Gutman, I. (1995) On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures. Journal of Chemical Information and Modeling, 35(1): 50-52 Mansour, T., Schork, M. (2009) Wiener, hyper-Wiener, detour and hyper-detour indices of bridge and chain graphs. J. Math. Chem, 581, 59-69 Nadjafi-Arani, M.J., Khodashenas, H., Ashrafi, A.R. (2012) Relationship between edge Szeged and edge Wiener indices of graphs. Glasnik matematicki, 47(1): 21-29 Randić, M. (1993) Novel molecular descriptor for structure-property studies. Chem. Phys. Lett, 211, str. 478-483 Stevanovic, D.P. (2001) Hosoya polynomial of composite graphs. Discrete Mathematics, 235(1-3): 237-244 Tratch, S.S., Stankevitch, M.I., Zefirov, N.S. (1990) Combinatorial models and algorithms in chemistry. The expanded Wiener number?a novel topological index. Journal of Computational Chemistry, 11(8): 899-908 Trinajstić, N. (1992) Chemical graph theory. Boca Raton, FL: CRC Press Wiener, H. (1947) Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1): 17-20 Yarahmadi, Z., Došlić, T., Ashrafi, A.R. (2010) The bipartite edge frustration of composite graphs. Discrete Applied Mathematics, 158(14): 1551-1558