- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:9
- preuzimanja u poslednjih 30 dana:6
|
|
2022, vol. 63, br. 1, str. 89-100
|
Modeliranje GTL-koprodukcije energije kao sredstvo za optimizaciju GTL postrojenja
Modeling of GTL-Power Coproduction as a means of optimisation of GTL plants
Federal University of Technology Owerri, Department of Petroleum Engineering, Nigeria
e-adresa: stanleyekwueme@yahoo.com
Sažetak
Tehnologije Gas-to-Likuids (GTL) imaju potencijal da pretvore povezane gasove iz baklje u premium transportne tečnosti, stvarajući tržište za inače nasukan resurs. Međutim, kapitalni troškovi GTL postrojenja su tokom godina ometali izbor projekta. Pogon za GTL je poboljšan optimizacijom postrojenja tako da se poveća njegova efikasnost i profitabilnost. Jedno takvo značajno poboljšanje u konfiguraciji GTL postrojenja je integracija jedinice za proizvodnju energije u GTL procesno postrojenje tako da se proizvodnja GTL tečnosti i proizvodnja električne energije mogu odvijati istovremeno u istom postrojenju. Ovaj metod koji se generalno naziva GTL-energetska koprodukcija će povećati ukupnu efikasnost i profitabilnost postojećeg procesa GTL postrojenja i predstaviti načine za ekonomičnu optimizaciju gubitka toplote kroz tokove nusproizvoda (tokove pare i dimnih gasova). Korišćenje tokova nusproizvoda će uzeti u obzir smanjenje termičke neefikasnosti u procesu GTL postrojenja. U ovom radu, dodatna jedinica je dodata konfiguraciji proizvodnog postrojenja od 863,3 m3/d GTL-a da bi se koristio tok pare nusproizvoda za proizvodnju električne energije. Ova dodatna jedinica električne energije proizvela je 10 MV električne energije povećavajući neto sadašnju vrijednost (NPV) postrojenja za 4,72%, dok je neto gotovinski povrat (NCR) povećan za 3,87%. Pored toga, vreme isplate je smanjeno za 2%. Koprodukcija GTL-Electriciti se pokazala kao sredstvo za optimizaciju GTL postrojenja, imajući sposobnost da donese više profita zbog smanjenih kapitalnih i operativnih troškova nego kada bi postrojenja radila odvojeno.
Abstract
Gas-to-Liquids (GTL) technologies have the potential to convert associated flare gases into premium transport liquids, creating a market for the otherwise stranded resource. However, the capital cost of GTL plants has over the years hampered the choice of the project. The drive for GTL is improved by optimization of the plant such that its efficiency and profitability is increased. One such notable improvement in GTL plant configuration is the integration of power production unit in the GTL process plant such that GTL liquids production and electricity production can occur concurrently in the same plant. This method generally called GTL-power co-production will increase the overall efficiency and profitability of existing GTL plant process and present ways to economically optimize the heat loss through the by-product streams (steam and flue gas streams). The utilization of the by-product streams will account for reductions in thermal inefficiencies within the GTL plant process. In this work, additional unit is added to the 863.3 m3 /d GTL product plant configuration to utilize the by-product steam stream for electricity generation. This additional electricity unit generated 10 MW of electricity increasing the net present value (NPV) of the plant by 4.72% while the net cash recovery (NCR) increased by 3.87%. Furthermore the pay-out time reduced by 2%. The GTL-Electricity co-production has proven to be a means of optimizing GTL plant, having capability to yield more profits due to reduced capital and operational expenses than if the plants were operated separately.
|
|
|
Reference
|
|
*** (2019) GGFR: Global Gas Flaring Reduction Partnership. Mini-GTL technology bulletin, 6, 1-12
|
|
Adegoke, B. (2006) Utilizing the Heat Content of Gas-to-Liquids by-Product Streams for Commercial Power Generation. Texas A &M University, Master's degree thesis submitted to the school of Graduate studies
|
|
Adegoke, K., Barrufet, M., Ehlig-Economides, C. (2005) GTL Plus Power Generation: The Optimal Alternative for Natural Gas Exploitation in Nigeria. u: International Petroleum Technology Conference
|
|
Aliyu, A.S., Ramli, T.R., Saleh, A.S. (2013) Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications. Energy, 61: 354-367
|
|
Anju, S., Solomon, P.A., Aparna, K. (2016) Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS. Journal of Natural Gas Science and Engineering, 30: 176-181
|
|
Ekwueme, S.T., Izuwa, N.C., Obibuike, U.J., Kerunwa, A., Ohia, N.P., Odo, J.E., Obah, B.O. (2019) Economics of Gas-to-Liquids (GTL) Plants. Petroleum Science and Engineering, 3(2), 85-93
|
|
Eluagu, R.C., Anyadiegwu, C.I.C., Obah, B.O. (2018) Evaluation of Performance Optimization of Modular Gas Turbine System for Monetisation of Associated Stranded Gas in the Niger Delta. International Journal of Engineering Sciences & Research Technology, 6: 42-69
|
|
Holmen, R.E.A. (2015) Fischer-Tropsch Co-Catalysts-A Mini-Review. Catalysts, 5, 478-499
|
|
Izuwa, N.C., Obah, B., Ekwueme, S.T., Obibuike, U.J., Kerunwa, A., Ohia, N.P., Odo, J.E. (2019) Gas-to-Liquids (GTL) Plant Optimization Using Enhanced Synthesis Gas Reforming Technology. Petroleum Science and Engineering, 3(2): 94-102
|
|
Kerunwa, S., Ekwueme, S.T., Obibuike, U.J. (2020) Utilization of Stranded Associated Flare Gases for Electricity Generation in Situ Through Gas-to-Wire in the Niger Delta. International Journal of Oil, Gas and Coal Engineering, 8(1): 28-34
|
|
Knutsen, K.T. (2013) Modelling and optimization of a Gas-to-Liquid plant. Norwegian University of Science and Technology, Master's thesis submitted to the department of Chemical Engineering
|
|
Ogugbue, C.C., Chukwu, G.A., Khatanair, S. (2007) Economics of GTL Technology for Gas Utilization. u: SPE Hydrocarbon Economics and Evaluation Symposium, Dakar, Texas
|
|
Onwuka, E.I., Iledare, O.O., Echendu, J.C. (2016) Gas to Power in Nigeria: This Burden on Natural Gas. u: SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria
|
|
Panahi, M., Rafiee, A., Skogestad, S., Hillestad, M. (2012) A Natural Gas to Liquids Process Model for Optimal Operation. Norway: industrial and Engineering Chemistry Research, 51(1): 425-433
|
|
Saravanan, N.P., Vuuren, M.J.V. (2010) Process wastewater treatment and management in gas-toliquids industries. SPE-126526. u: SPE oil and gas India conference and exhibition, Mumbai, India
|
|
Srivatsan, J.S., Linke, P., Amani, M. (2009) Seawater Desalination Using Excess Heat From GTL Process. u: SPE annual technical conference and exhibition, Louisiana: SPE, SPE -124462-MS
|
|
U S.Doe (2015) Combined Heat and Power Technology. u: Factsheet Series
|
|
Vogel, A.P., van Dyk, B., Saib, A.M. (2016) GTL using efficient cobalt Fischer-Tropsch catalysts. Catalysis Today, 4, 408-419
|
|
Walwynb, M.K.E.D.R. (2016) Success factors for the commercialisation of Gas-to-Liquids technology. South African Journal of Business Management, 47(3): 63-72
|
|
|
|