- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:23
- preuzimanja u poslednjih 30 dana:9
|
|
2022, vol. 49, br. 2, str. 107-115
|
Etarska ulja kao antimikrobna i antiadhezivna sredstva protiv bakterija Salmonella Typhimurium i Staphylococcus aureus, i kvasaca Candida albicans i Saccharomyces cerevisiae
Essential oils as antimicrobial and anti-adhesion agents against bacteria Salmonella Typhimurium and Staphylococcus aureus, and yeasts Candida albicans and Saccharomyces cerevisiae
aInstitut za prehrambene tehnologije, Novi Sad, Srbija bUniverzitet u Novom Sadu, Tehnološki fakultet, Srbija cUniversity of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
e-adresa: zorica.tomicic@fins.uns.ac.rs
Projekat: Ružica M. Tomičić thanks the Provincial Secretariat for Higher Education and Scientific Research, Autonomous Province of Vojvodina, Serbia for financial support within grant No. 142-451-2623/2021-01.
Sažetak
Rastući globalni problem usled povećane rezistencije mikroorganizama na najčešće korišćena antimikrobna sredstva, podstakao je istraživanja u cilju identifikacije novih, efikasnijih lekova širokog spektra delovanja. Poznato je da etarska ulja biljaka, zbog velikog biološkog i strukturnog diverziteta svojih komponenti, imaju mnoge potencijalne prednosti. Cilj ovog istraživanja bio je da se proceni antimikrobni i antiadhezivni efekat petnaest etarskih ulja i njihovih komponenti protiv dve bakterijske vrste i dve vrste kvasaca uzročnike kvarenja hrane i zaraznih bolesti. Antimikrobna aktivnost je određena ispitivanjem minimalne inhibitorne koncentracije (MIC), minimalne baktericidne koncentracije (MBC) i minimalne fungicidne koncentracije (MFC) etarskih ulja i komponenti. Rezultati su pokazali da su etarska ulja Cinnamomum zeylanicum i Eugenia caryophyllus imala najveću antimikrobnu aktivnost sa vrednostima MIC u rasponu od 0.078 do 1.25 mg/mL, odnosno 0.039 do 1.25 mg/mL. S druge strane, etarska ulja Eucalypti aetheroleum i Salvia officinalis su pokazala znatno slabija antimikrobna svojstva od ostalih. U daljem istraživanju, koncentracije MIC su korišćene za procenu inhibicije adhezije bakterija Salmonella Typhimurium ATCC 25923 i Staphylococcus aureus ATCC 14208, i kvasaca Candida albicans ATCC 10231 i Saccharomyces cerevisiae ATCC 9763 korišćenjem metode bojenja kristal violetom u mikrotitar pločama. Na osnovu procenta inhibicije adhezije, kvasac S. cerevisiae ATCC 9763 je pokazao visok stepen antimikrobne rezistencije. Pored toga, E. caryophyllus je imalo najjači efekat sa inhibicijom adhezije do 73%. U skladu sa rezultatima antimikrobne osetljivosti, najaktivnija antiadhezivna jedinjenja bila su karvakrol i timol. S obzirom na ulogu biofilma u kvarenju hrane i infektivnim bolestima, inhibicija početne faze formiranja biofilma prirodnim antimikrobnim agensima može biti alternativa uobičajeno korišćenim sintetičkim agensima.
Abstract
A serious global problem with the increasing resistance of microorganisms to currently used antimicrobials has opened up the promotional research in the identification of new, more effective drugs with a broad spectrum of antimicrobial activities. Plant essential oils, due to the large biological and structural diversity of their components, are known to have many potential benefits. This study aimed to evaluate the antimicrobial and anti-adhesion activity of fifteen essential oils and their compounds against two bacterial and two yeast species responsible for food spoilage and infectious diseases. Antimicrobial activity was determined by testing the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC) of essential oils and compounds. The essential oils of Cinnamomum zeylanicum and Eugenia caryophyllus showed the highest antimicrobial activity with MICs ranging from 0.078 to 1.25 mg/mL, and 0.039 to 1.25 mg/mL, respectively. On the other hand, essential oils of Eucalypti aetheroleum and Salvia officinalis had significantly weaker antimicrobial properties than the others. Further, MICs were used to assess the inhibition of adhesion of bacteria Salmonella Typhimurium ATCC 25923 and Staphylococcus aureus ATCC 14208, and yeasts Candida albicans ATCC 10231 and Saccharomyces cerevisiae ATCC 9763 in a microtiter plate using the crystal violet staining method. Based on the percentage of adhesion inhibition, yeast S. cerevisiae ATCC 9763 showed a high level of antimicrobial resistance. E. caryophyllus had the strongest effect with inhibition up to 73%. Consistent with the antimicrobial susceptibility results, the most active anti-adhesion compounds were carvacrol and thymol. Considering the role of biofilm in food spoilage and clinical diseases, inhibition of the initial phase of biofilm formation by natural antimicrobial agents may be an alternative to commonly used synthetic ones.
|
|
|
Reference
|
|
*** (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne: National Committee for Clinical Laboratory Standards(NCCLS)
|
|
Al-Shabib, N.A., Husain, F.M., Ahmad, I., Khan, M.S., Khan, R.A., Khan, J.M. (2017) Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control, 79: 325-332
|
|
Cáceres, M., Hidalgo, W., Stashenko, E., Torres, R., Ortiz, C. (2020) Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics (Basel), 9(4): 147-147
|
|
Campana, R., Casettari, L., Fagioli, L., Cespi, M., Bonacucina, G., Baffone, W. (2017) Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. International Journal of Food Microbiology, 241: 132-140
|
|
CLSI (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. Wayne: Clinical and Laboratory Standards Institute, 3rd ed.; Approved standard. M27-A3
|
|
Cosentino, S., Tuberoso, C.I.G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., Palmas, F. (1999) In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29(2): 130-135
|
|
Firmino, D.F., Cavalcante, T.T.A., Gomes, G.A., Firmino, N.C.S., Rosa, L.D., de Carvalho, M.G., Catunda, F.E.A. (2018) Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities. Scientific World Journal, 2018: 1-9
|
|
Giordani, R., Regli, P., Kaloustian, J., Mikaïl, C., Abou, L., Portugal, H. (2004) Antifungal effect of various essential oils against Candida albicans: Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytotherapy Research, 18(12): 990-995
|
1
|
Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A., Ozkan, H. (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chemistry, 103(4): 1449-1456
|
|
Knowles, J.R., Roller, S., Murray, D.B., Naidu, A.S. (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 71(2): 797-803
|
|
Mith, H., Duré, R., Delcenserie, V., Zhiri, A., Daube, G., Clinquart, A. (2014) Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Science & Nutrition, 2(4): 403-416
|
3
|
Nazzaro, F., Fratianni, F., de Martino, L., Coppola, R., de Feo, V. (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 6(12): 1451-1474
|
|
O'Bryan, C.A., Pendleton, S.J., Crandall, P.G., Ricke, S.C. (2015) Potential of plant essential oils and their components in animal agriculture: In vitro studies on antibacterial mode. Frontiers in Veterinary Science, 2: 1-8
|
|
Orhan-Yanıkan, E., da Silva-Janeiro, S., Ruiz-Rico, M., Jiménez-Belenguer, A.I., Ayhan, K., Barat, J.M. (2019) Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control, 101(2): 29-38
|
|
Purkait, S., Bhattacharya, A., Bag, A., Chattopadhyay, R.R. (2018) Antibacterial and antioxidant potential of essential oils of five spices. Journal of Food Quality and Hazards Conrol, 5(2): 61-71
|
|
Sakkas, H., Papadopoulou, C. (2017) Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology, 27(3): 429-438
|
|
Semeniuc, C.A., Pop, C.R., Rotar, A.M. (2017) Antibacterial activity and interactions of plant essential oil combinations against gram-positive and gram-negative bacteria. Journal of Food and Drug Analysis, 25(2): 403-408
|
|
Srey, S., Jahid, I.K., Ha, S.D. (2013) Biofilm formation in food industries: A food safety concern. Food Control, 31(2): 572-585
|
2
|
Swamy, M.K., Akhtar, M.S., Sinniah, U.R. (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evidence-Based Complementary and Alternative Medicine, 2016: 1-21
|
|
Tomičić, Z., Tomičić, R., Smole, M.S., Bucar, F., Turek, I., Raspor, P. (2022) Antifungal and anti-adhesion activity of plant extracts and essential oils against Candida spp. and Pichia spp. Journal of Food and Nutrition Research, 61(1): 61-68
|
1
|
Tomičić, Z., Zupan, J., Matos, T., Raspor, P. (2016) Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata. Medical Mycology, 54(8): 835-845
|
|
Trevisan, D.A.C., Silva, A.F.D., Negri, M., Abreu, F.B.A.D., Machinski, J.M., Patussi, E.V., Campanerut-Sá, P.A.Z., Mikcha, J.M.G. (2018) Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype Typhimurium. Brazilian Journal of Pharmaceutical Sciences, 54(1): e17229-e17229
|
|
Valdivieso-Ugarte, M., Gomez-Llorente, C., Plaza-Díaz, J., Gil, Á. (2019) Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients, 11(11): 2786-2786
|
|
|
|