Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 42  
Back povratak na rezultate
2022, vol. 50, br. 4, str. 587-606
Procena čvrstoće snopa materijala metalnog zupčanika
Texas Southern University, Department of Engineering, Houston, Texas, USA

e-adresaedward.osakue@tsu.edu
Ključne reči: Bending stress; Fatigue; Reliability; Pulsating; Endurance; Failure; Strength
Sažetak
Izrazi za pulsirajuću snagu ili jačinu snopa mnogih popularnih metalnih materijala zupčanika su izvedeni na osnovu zatezne čvrstoće i odnosa izdržljivosti. Predviđene vrednosti čvrstoće su za pouzdanost od 99% pri ciklusima opterećenja koja odgovaraju izdržljivosti materijala. Izrazi su zasnovani na razmatranju revidirane formule naprezanja korena Levis-a zupčanika tretiranjem projektnih parametara kao slučajnih promenljivih povezanih sa lognormalnom funkcijom gustine verovatnoće i primenom Gerberovog pravila otkaza zamora. Predviđanja pulsirajuće jačine su upoređena sa onima iz AGMA procene za kroz kaljene čelike i druge materijale. Odstupanja između predviđanja modela i AGMA vrednosti za materijale od čelika i duktilnog livenog gvožđa su relativno niske. Takođe su primećene niske varijacije između vrednosti modela i AGMA za sivi liveni gvožđe visoke čvrstoće i livenu bronzu. Međutim, nađene su velike varijacije između vrednosti modela i AGMA za sivi liveni gvožđe male čvrstoće i livenu bronzu. Sve u svemu, procene modela se smatraju dovoljno tačnim za aplikacije preliminarnog dizajna gde se generišu početne veličine zupčanika. Studija je pokazala da je za mnoge metalne materijale zupčanika prosečan odnos pulsirajuće čvrstoće 0,36 uz pouzdanost od 99%. Stoga je opravdana sugestija Buckinghama da je zamorna čvrstoća zuba zupčanika približno jedna trećina (0,333) zatezne čvrstoće materijala.
Reference
*** Introduction and Perspectives. https://www.Asminternational.org/documents
*** Compacted Graphite Iron-Mechanical and Physical Properties for Engine Design. SinterCast-Supermetal CGI, https://www.sintercast.com/media/1686/sintercastcgi-mechanical-and-physical-properties-for-enginedesign-1.pdf
*** Spur Gear Pair Calculation According to DIN 3990 and Other Standards. Chapter 7, https://www.eassistant.eu/fileadmin/dokumente/eassistant/etc/HTMLHandbuch/en/eAssistantHandb_H TML_ench7.html
*** Helix Angle Tolerance. https://www.practicalmachinist.com/vb/general/cros sed-helical-gears-helix-angle-tolerance-309404
*** Technical Data. https://www.kggear.co.jp/en/wpcontent/themes/bizvektor-globaledition/pdf/TechnicalData_KGSTOCKGEARS.pdf
*** (1975) Metals Handbook: Failure Analysis & Prevention. 8th Edition. Volume 10
*** Ductile Iron. https://www.ductile.org/didata/Section3/3part1.htm
*** ASTM Class 20 Standard Gray Iron Test Bars, as Cast & Tin Bronze UNS90700 Sand Castings. http://www.matweb.com/search/datasheet.aspx?
American Gear Manufacturers Association (2004) Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth. ANSI/AGMA 2004-D04
Ashby, M.F., Jones, D.R.H. (1986) Engineering Materials 2: An Introduction to Microstructures, Processing and Design. Oxford: Pergamon Press, p. 267
Askeland, D.R., Phule, P.P. (2003) The Science and Engineering of Materials. United States: Thomson Brooks/Cole, 4th Ed
Aziz, I.A.A., Idris, D.M.N.D., Mohd, G.W. (2017) Investigating Bending Strength of Spur Gear: A Review. MATEC Web Conference, 90, 01037
Bergseth, E. (2009) Influence of gear surface roughness, lubricant viscosity and quality level on ISO 6336 calculation of surface durability. Stockholm: Royal Institute of Technology-Department of Machine Design, Technical Report, https://www.diva-portal.org/smash/get/diva2:489751/FULLTEXT01.pdf
Bhandari, V.B. Design of Machine Elements. New Delhi: McGraw-Hill Education, 3rd ed
Bommisetty, V.S.N.K. (2012) Finite element analysis of spur gear set. Cleveland State University-Mechanical engineering Department, Masters' thesis
Boston Gear Engineering Information: Spur Gears. https://www.bostongear.com/-/media/Files/ Literature/Brand/boston-gear/catalogs/p-1930-bgsections/p-1930-bg_engineering-info-spurgears.ashx
Boyce, M.P. (2012) Gas Turbine Engineering Handbook. Fourth Edition
Budynas, R.G., Nissbett, J.K. (2010) Shigley's mechanical engineering design. Delhi: McGraw-Hill Education, 9th ed
Chang, K.H. (2013) Product Performance Evaluation Using CAD/CAE. New York: Academic Press, Chap. 4
Chermilevsky, D., Lavrona, E., Romano, V. (1984) Mechanics for Engineers. Moscow: MIR Pub, 373-373
Chernilevsky (1990) Practical Course in Machine Design. Moscow: MIR, p. 67
Chernilevsky, D., Berezovsky, Y., Petrov, M. (1988) Machine Design. Moscow: MIR
Childs, P.R.N. (2014) Mechanical Design Engineering Handbook. Boston: Butterworth Heinemann Elsevier
Deng, G.J., Tu, S.T., Zhang, X.C., Wang, Q.Q., Qin, C.H. (2015) Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169. Engineering Fracture Mechanics, 134: 433-450
Dobrovolsky,, Zablonsky, K., Mak, S., Radchik, A., Erlikh, L. (1965) Machine elements. Moscow: Foreign Language Pub. House
Dudley, D.W. (2009) Handbook of Practical Gear Design. Boca Raton: CRC Press
Gope, P.C. (2012) Machine Design: Fundamentals and Applications. Delhi: PHI Learning Private Ltd
Grbović, A.M., Rašuo, B.P., Vidanović, N.D., Perić, M.M. (2011) Simulation of crack propagation in titanium mini dental implants (MDI). FME Transactions, vol. 39, br. 4, str. 165-170
International Organisation for Standardization (ISO) (1996) Calculation of load capacity of spur and helical gears: Calculation of tooth bending strength. Part 3, ISO 6336-2
Irsel, G. (2021) Bevel Gears Strength Calculation: Comparison ISO, AGMA, DIN, KISSsoft and ANSYS FEM Methods. Journal of the Chinese Society of Mechanical Engineers, Vol. 42, No. 3, pp. 315 - 323
Juvinall, R.C., Marshek, K.M. (2017) Juvinall's fundamentals of machine component design. Singapore: Wiley, S.I. Version
Kapelevich, A. Direct Gear Design. Boca Raton, New York: CRC Press
Kastratović, G., Vidanović, N., Grbović, A., Rašuo, B. (2018) Approximate determination of stress intensity factor for multiple surface cracks. FME Transactions, vol. 46, br. 1, str. 39-45
Khurmi, R.S., Gupta, J.K. (2008) A Textbook of Machine Design. S. Chand, Technical
Kohara Gear Industry Co., Ltd (KHK) Calculations of gear dimensions. Saitama-ken, Japan, 332-0022, https://khkgears.net/new/gear_knowledge/gear_technical_reference/calculation_gear_dimensi ons.html, September, 2018
Koutsis, A. (2017) Common Gear Failures. Gearsolutions.com, June
Kravchenko, P.Y.E. (1964) Fatigue Resistance. New York: Pergamon
Maitra, G.M. (2013) Fundamentals of Toothed Gearing: Handbook of Gear Design. New Delhi: McGraw Hill, 2nd Edition
Mott, R.L. (2004) Machine elements in mechanical design. New York: Pearson Prentice Hall, 4th ed. SI
National Broach & Machine (1985) Back to Basics: Material Selection and Heat Treatment. Gear Technology, July/August, 40-47
Norton, R.L. (2000) Machine design: An integrated approach. Upper Saddle River, New Jersey: Pearson Prentice Hall, Chap. 7
Orthwein, W. (1990) Machine Component Design. New York: West Pub. Coy, 189-189
Osakue, E.E. (2012) A Linearized Gerber Fatigue Model. International Journal of Modern Engineering, Vol. 12, No 1, p. 64 -72
Osakue, E.E., Anetor, L. (2017) Helical Gear Contact Fatigue Design by Spur Gear Equivalency. Int'l Journal of Research in Engineering and Technology, Vol. 06, Issue 02
Osakue, E.E. (2014) Probabilistic Fatigue Design of Shaft for Bending and Torsion. Int'l Journal of Research in Engineering and Technology, 3(9): 370-386
Osakue, E.E. (2013) Probabilistic Design with Gerber Fatigue Model. Mechanical Engineering Research, 3(1): 99-117
Osakue, E.E., Anetor, L. (2016) A Lognormal Reliability Design Model. Int'l Journal of Research in Engineering and Technology, 5(7): 245-259
Osakue, E.E. (2015) Lognormal Reliability-Based Component Design. Houston, Texas, U.S.A: Texas Southern University-Department of Industrial Technology, Technical report
Osakue, E.E., Anetor, L. (2017) Helical Gear Bending Fatigue Design. Int'l Journal of Research in Engineering and Technology, Vol. 06, Issue 04
Osakue, E.E., Anetor, L., Odetunde, C. (2012) A generalized modified Gerber fatigue criterion. Machine Design, vol. 4, br. 1, str. 1-10
Osakue, E.E., Anetor, L., Odetunde, C. (2015) Reliability-Based Component Design. u: International Mechanical Engineering Congress and Exposition 2015 IMECE, November 13-19, Houston, Texas, USA, Proceedings of, ASME International, str. V011T14A012, Paper Number IMECE2015-50700
Osakue, E.E., Anetor, L., Harris, K. (2021) Pitting strength estimate for cast iron and copper alloy materials. FME Transactions, vol. 49, br. 2, str. 269-279
Osakue, E.E., Anetor, L. (2017) A Method for Estimating a Probabilistic Design Factor. International Journal of Research in Engineering and Technology, 06(08): 119-129
Osakue, E.E., Anetor, L., Harris, K. (2021) An estimate of the pitting strength of steel materials. FME Transactions, vol. 49, br. 1, str. 1-20
Osakue, E.E., Anetor, L. (2020) Revised Lewis Bending Stress Capacity Model for Cylindrical Gears. Open Mechanical Engineering Journal, 14: 3-16
Osakue, E.E., Anetor, L., Harris, K. (2020) A parametric study of frictional load influence in spur gear bending resistance. FME Transactions, vol. 48, br. 2, str. 294-306
Polasik, S.J., Williams, J.J., Chawla, N. (2001) Fatigue Crack Initiation and Propagation in Ferrous Powder Metallurgy Alloys. Advances in Powder Metallurgy and Particulate Materials, p. 2042-2056, May
Rortbart, H.A., Brown, T.H. (2006) Mechanical Design Handbook. New York: McGraw-Hill, 2nd ed., p.5.34
Roshetov, D., Ivanov, A., Fadeev, V. (1990) Reliability of Machines. Moscow: MIR
Schmid, S.R., Hamrock, B.J., Jacobson, B.O. (2014) Fundamentals of machine elements. New York: CRC Press, 3rd ed
Shigley, J.E., Mischke, C.R., eds. (1996) Standard Handbook of Machine Design. New York: McGraw-Hill
Surnis, P., Kulkarni, P. (2020) Material Selection for Spur Gear Design Using Ashby Chart. Int'l Research Journal of Engineering and Technology, 7(9): 62-72
Šraml, M., Flašker, J. (2007) Computational approach to contact fatigue damage initiation analysis of gear teeth flanks. International Journal of Advanced Manufacturing Technology, 31(11-12): 1066-1075
Ullman, G.D. (2009) Appendix C: The Statistical Factor of Safety. u: The Mechanical Design Process, New York: McGraw-Hill, 2nd ed
Zanardi, F. Fatigue Properties and Machinability of ADI. Fonderia; http://www.aimnet.it/allpdf/pdf_pubbli/10_05/Zanardi.pdf
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2204587O
primljen: 15.08.2022.
prihvaćen: 15.10.2022.
objavljen u SCIndeksu: 10.12.2022.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka