- citati u SCIndeksu: [1]
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:4
- preuzimanja u poslednjih 30 dana:3
|
|
2018, vol. 46, br. 2, str. 194-204
|
Projektovanje pravozubih konusnih zupčanika otpornih na piting
Design of straight bevel gear for pitting resistance
aDepartment of Industrial Technology Texas Southern University Houston, Texas, USA bDepartment of Mechanical Engineering Nigerian Defence Academy Kaduna, Nigeria
e-adresa: osakueee@tsu.edu
Projekat: The authors gratefully acknowledge that this study was supported in parts with funds from COSET Research Fund and the University Faculty Development Fund of Texas Southern University, Houston, Texas
Sažetak
Prikazan je transparentan model veličine kontaktnog napona kod pravozubih konusnih zupčanika, izrađen na osnovu Tredgoldove geometrijske aproksimacije. Definisan je faktor opterećenja konusa koji obezbeđuje kinetičku vezu između fizičkog konusnog zupčanika i virtuelnog cilindričnog zupčanika. Prikazan je proračun kontaktnog napona za tri slučaja projektovanja zupčanika iz različitih referenci i izvršeno je upoređivanje sa AGMA procenama. Razlike u dobijenim rezultatima se kreću od 2,4% do 23,4% sa procenama novih modela, koje su obično niže od AGMA vrednosti. Verzija projekta određivanja dimenzija novog modela primenjena je na dva slučaja. Poređenje vrednosti faktora opterećenja u radnim uslovima pri određivanju dimenzija kod projektovanja zupčanika i verifikacije projekta pokazuje razliku od 0,76% u slučaju 4 i -1,65% u slučaju 5. Iako je za dalju verifikaciju pristupa projektovanju potrebno prikazati još slučajeva, može se zaključiti da je model projektovanja prihvatljiv.
Abstract
Based on the Tredgold geometric approximation, a transparent contact stress capacity model for straight bevel gears is presented. A bevel load factor is defined which provides a kinetic link between the physical bevel gear and virtual spur gear. Three design cases of contact stress computations from different references are carried out and compared with AGMA estimates. Differences in results vary from 2.4% to 23.4% with the new model estimates, generally lower than AGMA values. The design sizing version of the new model is applied in two design cases. Comparison of the service load factor values for design sizing and design verification indicates a difference of 0.76% in case 4 and -1.65% in case 5. While more design cases are necessary for further verification of the design approach presented, it may however, be concluded from the results of our study that the design model presented appears reasonable.
|
|
|
Reference
|
|
*** Mechanical design data manual: Spur and helical gears. Chap. 8, http://www.learneasy.info/MDME/modules/7758D_Machine_Design/gears/gears.pdf
|
|
Bausbacher, E., Hunt, H. (1993) Process Plant Layout and Design. Upper Saddle River: PTR Prentice Hall
|
2
|
Bergseth, E. (2009) Influence of gear surface roughness, lubricant viscosity and quality level on ISO 6336 calculation of surface durability. Stockholm: Royal Institute of Technology-Department of Machine Design, Technical Report, https://www.diva-portal.org/smash/get/diva2:489751/FULLTEXT01.pdf
|
6
|
Bhandari, V.B. (2010) Design of machine elements. India: McGraw Hill, 3rd ed
|
|
Broglie, M.J., Smith, D.F. (1992) Gear hardness technology. Gear Technology, Match/April
|
6
|
Budynas, R.G., Nissbett, J.K. Shigley's mechanical engineering design. McGraw Hill Education, 9th ed
|
6
|
Collins, J.A., Busby, H., Staab, G.H. (2010) Mechanical design of machine elements and machines: A failure prevention perspective. New York: John Wiley and Sons, 2nd ed
|
6
|
Dudley, D.W. (2009) Handbook of practical gear design. Boca Raton: CRC Press
|
|
Gopinath, K., Mayuram, M.M. Module 2-gears: Bevel gear problems. Lecture 14, http://nptel.ac.in/courses/112106137/pdf/2_14.pdf
|
|
Joshi, H.D., Kothari, K.D. (2014) Mode and cause of failure of a Bevel gear: A review. Int’l Journal of Advance Engineering and Research Development (IJAERD), Volume 1 Issue 2, March 2014, e-ISSN: 2348-4470
|
5
|
Maitra, G.M. (2013) Fundamentals of toothed gearing: Handbook of gear design. New Delhi: McGraw Hill, 2nd ed. Beach-Piping TB
|
1
|
Moldovean, G., Gavrila, C., Butuc, B. (2013) Fatigue stress calculation of straight bevel gears applied to a photo voltaic tracking system. Annals of the oradea university. Fascicle of management and technological engineering, XXII (XII), 2013/1(1):
|
7
|
Mott, R.L. (2004) Machine elements in mechanical design. New York: Pearson Prentice Hall, 4th ed. SI
|
8
|
Norton, R.L. (2000) Machine design: An integrated approach. Upper Saddle River, New Jersey: Prentice-Hall, 2nd. ed
|
3
|
Osakue, E.E., Anetor, L. (2017) Helical Gear Contact Fatigue Design by Spur Gear Equivalency. Int'l Journal of Research in Engineering and Technology, Vol. 06, Issue 02
|
2
|
Osakue, E.E., Anetor, L., Odetunde, C. (2015) Reliability-Based Component Design. u: Proceedings of International Mechanical Engineering Congress and Exposition 2015 MECE, Paper Number IMECE2015-50700, November 13-19, Houston, Texas, USA, ASME International, str. V011T14A012
|
3
|
Osakue, E.E. (2016) Simplified Spur Gear Design. u: Proceedings of International Mechanical Engineering Congress and Exposition 2015 MECE, Paper Number IMECE2016-65426, November 11-17, Phoenix Arizona, ASME International, str. V011T15A018
|
3
|
Petrov, M., Chernilevsky, D., Berezovsky, Y. (1988) Machine Design. Moscow: MIR
|
|
Raj, M.N., Jayaraj, M. (2013) Design of contact stress analysis in straight bevel gear. International Journal of Computational Engineering Research, Vol-03, Issue-4
|
|
Rothbart, H.A., Brown, T.H. (2006) Mechanical Design Handbook. New York: McGraw-Hill, 2nd. ed
|
|
Savage, M., Mackulin, M.J. (1991) Maximum life spur gear design. NASA Technical Memorandum
|
4
|
Schmid, S.R., Hamrock, B.J., Jacobson, B.O. (2014) Fundamentals of machine elements. New York: CRC Press, 3rd ed
|
|
Shigley, J.E., Chief, M.C.R., Editors (1996) Standard Handbook of Machine Design. New York: McGraw-Hill
|
1
|
Stadtfeld, H.J. (2001) The basics of spiral bevel gears. Gear Technology, Feb. pp. 31-38
|
|
|
|