Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 54  
Back povratak na rezultate
2021, vol. 49, br. 3, str. 519-533
Kontaktni napon kod helikoidnih konusnih zupčanika
aTexas Southern University, Department of Industrial Technology, Houston, Texas, USA
bTexas Southern University, Department of Engineering, Houston, Texas, USA
cTexas Southern University, Houston, Texas, USA

e-adresaedward.osakue@tsu.edu
Ključne reči: gears; contact stress; fatigue; helix angle; equivalent spur gear
Sažetak
Helikoidni konusni zupčanici imaju nagnute ili zakrivljene zupce na konusnoj površini i najčešći tipovi su kosi, spiralni, zerol i hipoidni konusni zupčanici. Zbog složene geometrije konusnih zupčanika, u projektovanju se najviše koristi koncept ekvivalentnih ili virtuelnih cilindričnih zupčanika. U radu se pristup bazira na sledećim pretpostavkama: ugao helikoide kod helikoidnih konusnih zupčanika jednak je srednjem uglu spirale, prečnik koraka na pozadini je određen kao prečnik helikoidnog zupčanika, primenjena je Tredgoldova aproksimacija kod helikoidnog zupčanika. Na osnovu ovih pretpostavki intenzitet kontaktnog napona helikoidnih konusnih zupčanika je formulisan preko tri parametra dizajna. Novi model intenziteta kontaktnog napona se koristi za proračun kontaktnog napona kod tri sistema zupčanika na tri primera i poređenjem sa prethodnim rešenjima. Razlike između novih proračuna i vrednosti kod prethodnih rešenja variraju od -3% do -11%, pri čemu su nove procene dosledne, ali neznatno ili nešto niže od prethodno dobijenih vrednosti. Iako su razlike naizgled male, one su od značaja jer kontaktni napon u velikoj meri utiče na trajnost zupčanika. Na primer, smanjenje kontaktnog napona za 5% može da poveća trajnost nekih čeličnih materijala za gotovo 50%. Razvijene jednačine ne odnose se na konusne zupčanike sa krunom.
Reference
*** ANSI/AGMA 2005-D03: Design Manual for Bevel Gears. pp. 40-41
*** ANSI/AGMA 2003-A86: Bevel Gear Rating Using the New Standard: AGMA 2003-A86. www.chegg.com, (accessed August 20, 2020)
Abdoli, H.A. (2005) Finite Element Approach to Spur, Straight Bevel and Hypoid Gear Design. University of Oslo, Research Report in Mechanics
AGMA (2003) ANSI/AGMA 2003-B97. https://www.agma.org/standards/ansi-agma-2003-b97/, (accessed April 2, 2021)
Berezovsky, Y., Chernilevsky, D., Petrov, M. (1988) Machine Desig. Moscow: MIR Pub
Bhandari, V.B. (2010) Design of Machine Elements. New Delhi: McGraw-Hill, 3rd edition
Brown, M.D. (2009) Design and Analysis of a Spiral Bevel Gear. Hartford, Connecticut, USA: Rensselaer Polytechnic Institute, M. Thesis
Budynas, R., Nisbett, K. (2010) Shigley's Mechanical Engineering Design. McGraw Hill, 9th Edition
Chernilevsky, D. (1990) A Practical Course in Machine Design. Moscow: MIR, 73: 298-303
Childs, P.R.N. (2014) Bevel Gears. u: Mechanical Design Engineering Handbook, Boston: Butterworth Heinemann Elsevier, Chap. 10
Collins, J.A., Busby, H., Staab, G.H. (2010) Mechanical design of machine elements and machines: A failure prevention perspective. New York: John Wiley and Sons, 2nd ed
Coy, J.J., Townsend, D.P., Zaretsky, D.E.V. (1985) Gearing. NASA Reference Report 1152, AVSCOM Technical Report 84-C-15
Crosher, W.P. (2012) Bevel gears, pressure angles and their relationship. https://gearsolutions.com/media/uploads/uploads/assets/PDF/Articles/Dec_1 2/1212_ToothTips.pdf. (Accessed May, 3, 2021)
DET NORSKE VERITAS (2003) Calculation of Gear Rating for Marine Transmissions. Classification Notes, No. 41.2, 2003, https://rules.dnvgl.com/docs/pdf/DNV/cn/2012-05/CN41-2.pdf, (March 10, 2021)
Dobrovolsky, V., Zablonsky, K., Mak, S., Radchik, A., Erlikh, L. (1972) Machine elements: A textbook. Moscow: Mir Publishers, p. 283
Dudley, D.W. (2004) Handbook of Practical Gear Design. CRC Press
Feng, Z., Song, C. (2017) Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear. International Journal of Rotating Machinery, 6842938
Gurumani, R., Shanmugam, S. (2011) Modeling and Contact Analysis of Crowned Spur Gear Teeth. Engineering Mechanics, 18(1): 65-78
Juvinall, R.C., Marshek, K.M. (2017) Juvinall's Fundamentals of Machine Component Design. Singapore: Wiley, S.I. Version
Khurmi, R.S., Gupta, J.K. (2015) A Textbook of Machine Design. New Delhi: Eurasia Pub. House
KISSsoft (2007) Calculation Programs for Machine Design: Bevel gear rating along AGMA2003 in KISSsoft. http://www.kisssoft.ch/english/downloads/pdf/AG MA2003_Comments.pdf, (accessed Aug 20, 2020)
Lawson, E. (2004) New ANSI/AGMA Accuracy Standards for Gears: ANSI/AGMA 2015-1-A01. www.geartechnology.com/issues/0304/lawson.pdf
Maitra, G.M. (2013) Fundamentals of toothed gearing: Handbook of gear design. New Delhi: McGraw Hill, 2nd ed. Beach-Piping TB
Mcvittie, D. (1998) Calculating Spur and Helical Gear Capacity with ISO 6336. Gear Technology, pp. 11-14
Michalec, G. Elements of Metric Gear Technology. http://qtcgears.com/tools/catalogs/PDF_Q420/Tech. pdf. (accessed April 25, 2021)
Moldovean, G., Gavrila, C., Butuc, B. (2013) Fatigue stress calculation of straight bevel gears applied to a photo voltaic tracking system. Annals of the oradea university. Fascicle of management and technological engineering, ISSUE #1, http://www.imtuoradea.ro/auo.fmte/, (accessed Feb.15, 2021)
Mott, R.L. (2004) Machine elements in mechanical design. New York: Pearson Prentice Hall, 4th ed. SI
Norton, R.L. (2000) Machine design: An integrated approach. Upper Saddle River, New Jersey: Prentice-Hall, p. 770, 2nd. Edition
Osakue, E.E., Anetor, L. (2018) Comparing Contact Stress Estimates of Some Straight Bevel Gears with ISO 10300 Standards. u: International Mechanical Engineering Congress and Exposition 2016 IMECE, November 9-15, Pittsburgh, Pennsylvania, USA, Proceedings, Paper Number IMECE2018-86573
Osakue, E.E., Anetor, L. (2017) Helical Gear Contact Fatigue Design by Spur Gear Equivalency. Int'l Journal of Research in Engineering and Technology, Vol. 06, Issue 02
Osakue, E.E. (2016) Simplified Spur Gear Design. u: International Mechanical Engineering Congress and Exposition 2015 MECE, November 11-17, Phoenix, Arizona, Proceedings, ASME International, str. V011T15A018, Paper Number IMECE2016-65426
Osakue, E.E., Lucky, A. (2018) Design of straight bevel gear for pitting resistance. FME Transactions, vol. 46, br. 2, str. 194-204
Osakue, E.E., Anetor, L., Harris, K. (2020) A parametric study of frictional load influence in spur gear bending resistance. FME Transactions, vol. 48, br. 2, str. 294-306
Osakue, E.E., Anetor, L. (2020) Revised Lewis Bending Stress Capacity Model for Cylindrical Gears. Open Mechanical Engineering Journal, 14: 3-16
Özbağci, B. (2012) Effect of Spiral Angle on Stress Distribution in the Spiral Bevel Gears. Dokuz Eylül University-Graduate School of Natural and Applied Sciences, MSc. (MEng.) Thesis
RoyMech Gears-Gear Efficiency. www.roymech.co.uk/Useful_Tables/Drive/Gear_Efficiency.html, (Accessed August, 2020)
Schmid, S.R., Hamrock, B.J., Jacobson, B.O. (2014) Fundamentals of machine elements. New York: CRC Press, 3rd ed
Shigley, J.E., Uicker, J.J.Jr. (1995) Theory of machines and mechanisms. McGraw-Hill
Shigley, J.E., Mischke, C.R. (1996) Standard Handbook of Machine Design. New York: McGraw-Hill, 2nd Edition
Stadtfeld, H. (2011) Tribology Aspects in Angular Transmission Systems. Gear Technology, Part VII, https://www.geartechnology.com/issues/0111x/stadtfeld.pdf, (accessed April 18, 2021)
Stadtfeld, H.J. (2001) The basics of spiral bevel gears. Gear Technology, Feb. pp. 31-38
Stadtfeld, H.J. (2015) Gear Mathematics for Bevel and Hypoid Gears. Gear Technology, Aug, pp. 50-56
Thamos, J. (2018) ISO Standardization of Bevel Gears: Overview and Ideas on Method 'A'. ZG Hypoid Gmbh
Townsend, D.P. (1986) Common Problems and Pitfalls in Gear Design. u: NASA Technical Memorandum, 88858, http://ntrs.nasa.gov/archive /nasa/casi.ntrs.nasa.gov/19870007600.pdf
Walsh, R.A. (2000) Electromechanical Design Handbook. New York: McGraw Hill, 3rd Edition
Wirth, C., Höhn, B.R., Braykoff, C. (2012) New Methods for the Calculation of the Load Capacity of Bevel and Hypoid. Alexandria, Virginia, USA: American Gear Manufacturers Association, AGMA Technical Paper 12FTM15, ISBN: 978-1-61481-046-9
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2103519O
primljen: 15.05.2021.
prihvaćen: 15.06.2021.
objavljen u SCIndeksu: 30.07.2021.
Creative Commons License 4.0

Povezani članci

FME Transactions (2018)
Projektovanje pravozubih konusnih zupčanika otpornih na piting
Osakue Edward E., i dr.

FME Transactions (2020)
Projektovanje veličine para cilindričnih pužnih zupčanika
Osakue Edward E., i dr.

FME Transactions (2021)
Proračun otpornosti na piting čeličnih materijala
Osakue Edward E., i dr.

prikaži sve [10]