Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 8 od 78  
Back povratak na rezultate
2019, vol. 47, br. 2, str. 7-25
Razvoj modela za ocenu kreditne sposobnosti prema karakteristikama nacionalnog tržišnog sistema
aErste Bank ad, Novi Sad
bMK Group DOO, Beograd
cUniverzitet Singidunum, Beograd

e-adresamilosilic.ns@gmail.com
Sažetak
Kako efikasno i efektivno plasirati kredit preduzećima, uz adekvatno povećanje stope povraćaja, i dalje predstavlja ključno pitanje svih kreditora u Republici Srbiji. Naime, domaći kreditori ili se koriste tradicionalnim metodama kreditne analize, koja zahteva velike troškove i spora je, ili primenjuju neke od svetski razvijenih modela za ocenu kreditne sposobnosti preduzeća, koje ipak nisu prilagođene karakteristikama i performansama domaćih preduzeća. Stručna i praktična stanovišta napominju da modeli za ocenu kreditne sposobnosti preduzeća kreirani za pojedinačno tržšte u znatnoj meri daju bolje rezultate od ostalih "standardizovanih modela", te ovo predstavlja osnovnu pretpostavku i ovog istraživanja. Finansijski izveštaji domaćih preduzeća zajedno sa njihovim analitičkim pokazateljima u najboljoj meri prikazuju njihove karakteristike. Kao takvi, predstavljaju osnov za razvoj modela za ocenu kreditne sposobnosti preduzeća, što i predstavlja osnovni cilj istraživanja. Postavljena hipoteza rada je "Uvažavajući specifičnosti domaćih preduzeća moguće je razviti model za ocenu kreditne sposobnosti za Republiku Srbiju koji će biti efikasniji od opšte poznatih modela". Rezultat istraživanja jeste model koji je moguće praktično primeniti a koji pri tome doprinosi povećanju efikasnosti prilikom donošenja odluka, i koji bi trebalo da prestavlja "conditio sine qua non" svakog kreditora u Srbiji.
Reference
Altman, E.I., Sabato, G. (2007) Modelling Credit Risk for SMEs: Evidence from the U.S. Market. Abacus, 43(3): 332-357
Baesens, B. (2003) Developing intelligent systems for credit scoring using machine learning techniques. Leuven: K. U. Leuven, (Unpublished PhD thesis)
Caracota, R.C., Dimitru, M., Dinu, M.R. (2010) Building a Small and Medium Enterprises. Theoretical and Applied Economics, 9(550), 117-128, retrieved from: http://www.ectap.ro/theoretical-and-applied-economics-number-9-2010/r66
Dahiya, S., Handa, S.S., Singh, N.P. (2015) Credit scoring using ensemble of various classifiers on reduced feature set. Industrija, vol. 43, br. 4, str. 163-174
Falbo, P. (1991) Credit-scoring by enlarged discriminant models. International Journal of Management Science, 19(4), 275-289
Feng, D., Gourieroux, C., Jasiak, J. (2008) The ordered qualitative model for credit rating transitions. Journal of Empirical Finance, 15(1), 111-130
Fernandes, G.B., Artes, R. (2016) Spatial dependence in credit risk and its improvement in credit scoring. European Journal of Operational Research, 249(2): 517-524
Gehrlein, W.V., Wagner, B.J. (1997) A two-stage least cost credit scoring model. Annals of Operations Research, 74: 159-171
Gupta, J., Wilson, N., Gregoriou, A., Healy, J. (2014) The effect of internationalisation on modelling credit risk for SMEs: Evidence from UK market. Journal of International Financial Markets, Institutions and Money, 31: 397-413
Hayden, E. (2003) Are Credit Scoring Models Sensitive with Respect to Default Definitions? Evidence from the Austrian Market. SSRN Electronic Journal, Paper presented at the EFMA 2003 Helsinki Meetings
Husein, F.M., Pambekti, G.T. (2015) Precision of the models of Altman, Springate, Zmijewski, and Grover for predicting the financial distress. Journal of Economics, Business & Accountancy Ventura, 17(3): 405-405
Ilić, M., Saković, D. (2017) Quantitative indicators in function of company's creditworthiness assessment. Economic Outlook, 19(2), 1-16. retrieved from: http://www.ekonomskipogledi.pr.ac.rs
Lessmann, S., Baesens, B., Seow, H., Thomas, L.C. (2015) Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1): 124-136
Orgler, Y.E. (1970) A Credit Scoring Model for Commercial Loans. Journal of Money, Credit and Banking, 2(4), 435. retrieved from: https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Flinks.jstor.org% 2Fsici%3Fsici%3D0022-2879%2528197011%25292%253A4%253C435%253AACSMFC%253E2.0.CO%253B2-7%26origin
Sembiring, T.M. (2015) Bankruptcy Prediction Analysis of Manufacturing Companies Listed in Indonesia Stock Exchange. International Journal of Economics and Financial Issues, 5(1), 354-359. Retrieved from: http://www.econjournals.com
Smaranda, C. (2014) Scoring Functions and Bankruptcy Prediction Models: Case Study for Romanian Companies. Procedia Economics and Finance, 10, 217-226
Steenackers, A., Goovaerts, M.J. (1989) A credit scoring model for personal loans. Insurance: Mathematics and Economics, 8(1): 90044-90053
Vukadinović, P., Cerović, S., Matović, V., Stevanović, G. (2018) Financial position and credit rating of companies in circular economy in Serbia. Industrija, vol. 46, br. 2, str. 77-98
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/industrija47-17666
objavljen u SCIndeksu: 16.08.2019.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0