- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:6
- preuzimanja u poslednjih 30 dana:4
|
|
2020, vol. 68, br. 4, str. 877-894
|
Napredak u ultrazvučnom raspršivanju za sintezu nanočestica zlata
Advance in ultrasonic spray pyrolysis (USP) for the synthesis of gold nanoparticles
Sažetak
Uvod/cilj: Ultrazvučno raspršivanje obično je korišćeno za pripremu submikronskih i nanočestica zlata. To je jednostavna metoda sinteze iz aerosola koja sadrži metalne soli kao što su zlato-hlorid, zlato-nitrat i zlato-acetat, koji su formirani u ultrazvučnom polju sa frekvencijama između 0,8 i 2,5 MHz. Metode: Ultrazvučno raspršivanje kombinuje formiranje aerosola u jednom ultrazvučnom polju sa njegovim transportom u reaktor korišćenjem nosećeg gasa USP i završnom redukcijom pomoću vodonika ili ugljen-monoksida. Do termičkog razlaganja zlato-acetata dolazi u neutralnoj atmosferi kao što je azot i argon na povišenim temperaturama. Uvećanje temperature redukcije do 260°C i 500°C vodi do dobijanja cilindričnih i sfernih čestica. Hemijska redukcija dešava se u vodenoj fazi korišćenjem natrijum-citrata i natrijum-borida nakon zagrevanja rastvora. Rezultati: Prahovi zlata dobijeni su na sobnoj temperaturi korišćenjem redukcije vodonikom u jednom ultrazvučnom polju na sobnoj temperaturi iz rastvora HAuCl4 pri frekvenci ultrazvuka od 0,8 MHz. Dobijene čestice zlata analizirane su skenirajućom elektronskom mikroskopijom (SEM) i energetski disperzivnom spektroskopijom (EDS). Obrazovane čestice su sferne i aglomerisane. Uvećanje temperature do 260°C i 500°C vodi do formiranja sfernih i cilindričnih čestica zlata. Zaključak: Novu poboljšanu opremu za sintezu zlata ultrazvučnim raspršivanjem rastvora HAuCl4 i redukcijom vodonikom ponudila je "Prizma" iz Kragujevca (Srbija). Ona omogućava kontrolisan proces sa boljom zaštitom pretvarača u ultrazvučnom polju i uvećanom proizvodnjom aerosola i njegovim transportom u reakcionu peć.
Abstract
Introduction/purpose: Ultrasonic spray pyrolysis (USP) is usually used for the preparation of submicronic and nanosized gold powders. This is a simple method for a synthesis from an aerosol containing dissolved metallic salts such as gold chloride, gold nitrate, and gold-acetate, obtained in the ultrasonic field using frequencies ranging from 0.8 to 2.5 MHz. Methods: The USP method combines aerosol formation in an ultrasonic field, transport of an aerosol with a carrier gas to the reactor and final reduction of HAuCl4 with a used gas such as hydrogen and carbon monoxide. The thermal decomposition of gold acetate takes place in a neutral atmosphere such as nitrogen and argon at elevated temperatures. The chemical reduction of HAuCl4 takes place in the aqueous phase using sodium citrate and sodium boride after heating water solution. Results: Powders of gold were obtained at room temperature using hydrogen reduction in an ultrasonic field at room temperature from HAuCl4 using a frequency of 0.8 MHz. The obtained gold particles were analysed using scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS). The formed particles are round and agglomerated. An increase in temperature to 260°C and 500°C leads to the formation of spherical and cylindrical gold particles. Conclusion: New improved equipment for an ultrasonic spray pyrolysis synthesis of gold powder from HAuCl4 with hydrogen reduction was offered by PRIZMA, Kragujevac, Serbia, enabling a controlled reduction process with better prevention of piezo transducers in an ultrasonic field and increased aerosol production and its transport to the reaction furnace.
|
|
|
Reference
|
1
|
Bond, G. (2008) The early history of catalysis by gold. Gold Bulletin, 41(3): 235-241
|
|
Corti, C. (2002) Recovery and refining of gold jewelry scraps and waste. u: The Santa Fe Symposium: The Premier Conference for Jewelry Makers, Albuquerque, NM, pp. 111-130, http://www.santafesymposium.org/2002-santa-fe-symposium-papers/2002-recovery-and-refining-of-gold-jewellery-scraps-and-wastes [Accessed: 10 August 2020]
|
1
|
Dittrich, R., Stopić, S., Friedrich, B. (2011) Mechanism of nanogold formation by ultrasonic spray pyrolysis. u: Proceeding of European Metallurgical Conference (EMC) 2011, Duesseldorf, June 26-June 29, 2011: Resources efficiency in the nonferrous metals industry-optimization and improvement, volume 3: p. 1065-1076, http://www.metallurgie.rwthaachen.de/new/images/pages/publikationen/emc2011_id_5231.pdf [Accessed: 10 August 2020]
|
|
Kozhukharov, S., Tchaoushev, S. (2013) Spray pyrolysis equipment for various application. Journal of Chemical Technology and Metallurgy, 48: 111-118, https://www.researchgate.net/publication/283826563_Spray_pyrolysis_equipment_for_various_applications [Accessed: 10 August 2020]
|
|
Piret, N.L., Hopper, M., Kudelka, H. (1977) Process for recovering silver and gold from chloride solutions. US patent number 4131454, https://patents.google.com/patent/US4131454A/en [Accessed: 10 August 2020]
|
|
Polte, J., Ahner, T.T., Delissen, F., Sokolov, S., Emmerling, F., Thünemann, A.F., Kraehnert, R. (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. Journal of the American Chemical Society, 132(4), pp.1296-1301
|
1
|
Qi, C. (2008) The production of propylene oxide over nanometer Au catalysts in the presence of H2 and O2. Gold Bulletin, 41(3): 224-234
|
|
Rudolf, R., Friedrich, B., Stopić, S., Anžel, I., Tomić, S., Čolić, M. (2012) Cytotoxicity of gold nanoparticles prepared by ultrasonic spray pyrolysis. Journal of Biomaterials Applications, 26(5): 595-612
|
|
Schmid, G., Corain, B. (2003) Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. European Journal of Inorganic Chemistry, 2003(17): 3081-3098
|
|
Stopic, S., Rudolf, R., Bogovic, J., Majerič, P., Čolić, M., Tomić, S., Jenko, M., Friedrich, B. (2013) Synthesis of Au nanoparticles prepared with ultrasonic spray pyrolysis and hydrogen reduction. Materials and Technology, 47(5), pp. 577-583, http://mit.imt.si/izvodi/mit135/stopic.pdf [Accessed: 10 August 2020]
|
|
Tréguer-Delapierre, M., Majimel, J., Mornet, S., Duguet, E., Ravaine, S. (2008) Synthesis of non-spherical gold nanoparticles. Gold Bulletin, 41(2): 195-207
|
|
Turkevich, J., Stevenson, P.C., Hillier, J. (1953) The formation of colloidal gold. Journal of Physical Chemistry, 57(7), pp. 670-673
|
|
Watzky, M.A., Finke, R.G. (1997) Transition metal nanocluster formation kinetic and mechanistic studies: A New mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. Journal of the American Chemical Society, 119(43): 10382-10400
|
|
Young, J.K., Lewinski, N.A., Langsner, R.J., Kennedy, L.C., Satyanarayan, A., Nammalvar, V., Lin, A.Y., Drezek, R.A. (2011) Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction. Nanoscale Research Letters, 6(1), art. numb. 428
|
|
|
|