Akcije

Serbian Journal of Electrical Engineering
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 2 od 3  
Back povratak na rezultate
2020, vol. 17, br. 2, str. 235-246
Green's function for the semi-infinite strip in terms of an improper integral
(naslov ne postoji na srpskom)
aUniversity of Montenegro, Faculty of Electrical Engineering, Podgorica, Montenegro
bUniversity of Montenegro, Faculty of Maritime Studies, Kotor, Montenegro

e-adresadraganf@ucg.ac.me, tanjav@ucg.ac.me
Ključne reči: semi-infinite strip; groove; Green's function; capacitance
Sažetak
(ne postoji na srpskom)
In this paper Green's function for the semi-infinite strip (which is the two-dimensional Green's function for a groove of infinite depth and length) is determined in the form of an improper integral, as opposed to the standard summation form. The integral itself, although rather complex, is found in a closed form. By using the derived Green's function simple formulas are obtained for a single and two-wire line configurations inside the groove.
Reference
Filipović, D., Dlabač, T. (2019) Two-dimensional green's function for the truncated wedge in terms of an improper integral. u: Proceedings of the 6th International Conference on Electrical, Electronic and Computing Engineering: IcETRAN 2019, Silver Lake, Serbia, June 2019, pp. 93-96
Filipović, D. (2019) Generalized functions: Elements of the theory with applications in electrical engineering. Belgrade: Academic Mind, in Serbian
Howard W. Sams & Co. (1968) Reference data for radio engineer. Indianapolis-Kansas City-New York
Jackson, J.D. (1962) Classical electrodynamics. New York-London: John Wiley & Sons, Inc
Panofsky, W.K.H., Phillips, M. (1962) Classical electricity and magnetism. Reading, MA-London: Addison-Wesley
Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I. (1981) Integrals and series of elementary functions. Moscow: Nauka / Science Publishers, in Russian
Smythe, W.R. (1968) Static and dynamic electricity. New York: McGraw-Hill
Veličković, D.M. (1982) Methods for solving electrostatic field problems: Part I. Niš: Stil-Podvis, in Serbian
Vladimirov, V. (1979) Distributions en physique mathématique. Moscou: Mir, in French
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/SJEE2002235F
objavljen u SCIndeksu: 02.09.2020.
Creative Commons License 4.0