Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 1 od 30  
Back povratak na rezultate
2019, vol. 62, br. 4, str. 29-35
Jedinjenja za sprečavanje korozije i za povećanje trajnosti prethodno izolovanih cevi
Karaganda State Technical University, Karaganda, Kazakhstan

e-adresat.bogoyavlenskaya88@gmail.com
Sažetak
Ispituje se prijanjanje poliuretanske toplotne izolacije na vodootporno spoljno kućište od polietilena u konstrukciji preinizoliranih cevnih sistema koji se koriste kao građevinski materijal za direktno zakopane toplovodne mreže. Da bi se produžio vek cevi za vrelovodne mreže sa standardnih 30 na 50 ili više godina, predlaže se upotreba poliuree kao vodootpornog premaza. Predlaže se utvrđivanje čvrstoće lepljenja toplotne izolacije vodonepropusnim spoljnim kućištem za smicanje u tangencijalnom smeru na ivici "Vodootporno spoljno kućište od polietilena - poliuretanska toplotna izolacija". Predstavljeni su rezultati ispitivanja. Prikazani su rezultati izračuna toplotnih gubitaka predizolovane cevi. Predstavljeni su rezultati ispitivanja ponašanja poliureepremaza u zemlji. Izvučeni su zaključci o mogućnosti upotrebe poliuree kao vodootpornog premaza za preizolirane cevi za cevovode za direktno zakopane toplovodne mreže.
Reference
*** (2013) District heating pipes: Preinsulated bonded pipe systems for directly buried hot water networks: Pipe assembly of steel service pipe, polyurethane thermal insulation and outer casing of polyethylene. u: DIN EN 253, BSI British Standards
*** (2009) District heating pipes. Preinsulated bonded pipe systems for directly buried hot water networks: Fitting assemblies of steel service pipes, polyurethane thermal insulation and outer casing of polyethylene. BSI British Standards, DIN EN 448
*** (2009) District heating pipes: Preinsulated bonded pipe systems for directly buried hot water networks: Joint assembly for steel service pipes, polyurethane thermal insulation and outer casing of polyethylene. BSI British Standards, DIN EN 489
Akishev, Y.S., Petryakov, A.V., Trushkin, N.I., Ustyugov, V.A. (2017) Improving of the adhesion of polyurethane foam to the low-pressure polyethylene processed by a plasma. Applied Physics
Chopra, K., Tyagi, V.V., Pandey, A.K., Sari, A. (2018) Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. Applied Energy, 228; 351-389
Danielewicz, J., Śniechowska, B., Sayegh, M.A., Fidorów, N., Jouhara, H. (2016) Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. Energy, 108; 172-184
Elnaggar, E., Elsokkary, T., Shohide, M., El-Sabbagh, B., Abdel-Gawwad, H. (2019) Surface protection of concrete by new protective coating. Construction and Building Materials, 220; 245-252
Gair, J.L., Lambeth, R.H., Cole, D.P., Lidston, D.L., Stein, I.Y., Kalfon-Cohen, E., Hsieh, A.J., Bruck, H.A., Bundy, M.L., Wardle, B.L. (2018) Strong process-structure interaction in stoveable poly(urethane-urea) aligned carbon nanotube nanocomposites. Composites Science and Technology, 166; 115-124
He, L., Attard, T.L., Zhou, H., Brooks, A. (2019) Integrating energy transferability into the connection-detail of coastal bridges using reinforced interfacial epoxy-polyurea reaction matrix composite. Composite Structures, 216; 89-103
Hou, H., Chen, C., Cheng, Y., Zhang, P., Tian, X., Liu, T., Wang, J. (2019) Effect of structural configuration on air blast resistance of polyurea-coated composite steel plates: Experimental studies. Materials & Design, 182; 108049-108049
Iqbal, N., Sharma, P., Kumar, D., Roy, P. (2018) Protective polyurea coatings for enhanced blast survivability of concrete. Construction and Building Materials, 175; 682-690
Kayfeci, M. (2014) Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials. Energy and Buildings, 69; 278-284
Korolev, I.A., Petrakov, G.P. (2010) Creation of a testing center for checking the quality of polyurethane foam insulation of pre-insulated pipelines used in heat supply systems. Magazine of Civil Engineering, No. 1 (11); Pp. 23-25
Patent, J. (2017) Patent EP2166269B2: Method for connecting cladded pipes. Germany: EuropeanPatentOffice, Patent EP2166269B2: isoplusFernwärmetechnik GmbH
Petrakov, G.P. (2012) The service life of plastic pipe in the polyurethane foam insulation, used for heating systems. Magazine of Civil Engineering, 29(3); 48-53
Sadr-Al-sadat,, Syed, A., Jalili, G., Mohammadreza (2019) The experimental and numerical study of water leakage from High-Density Polyethylene pipes at elevated temperatures. Polymer Testing, vol.74. Pp. 274-280
Slepchenok, V.S., Petrakov, G.P. (2011) Increasing the energy efficiency of thermal insulation of heat network pipelines in Northern and Northeastern regions of Russia. Magazine of civil engineering, 22(4); 26-32
Turski, M., Sekret, R. (2018) Buildings and a district heating network as thermal energy storages in the district heating system. Energy and Buildings, 179; 49-56
Wang, H., Meng, H., Zhu, T. (2018) New model for onsite heat loss state estimation of general district heating network with hourly measurements. Energy Conversion and Management, 157; 71-85
Zhang, F., Ju, P., Pan, M., Zhang, D., Huang, Y., Li, G., Li, X. (2018) Self-healing mechanisms in smart protective coatings: A review. Corrosion Science, 144; 74-88
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/GRMK1904029K
objavljen u SCIndeksu: 28.01.2020.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka