Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 47  
Back povratak na rezultate
2021, vol. 69, br. 1, str. 114-147
Viskoprinosni i hemijski obogaćeni hibridi kukuruza srpske selekcije kao najbolja osnova za najkvalitetniju hranu
Projekat:
These studies have been financially supported mainly by the Maize Research Institute "Zemun Polje", Belgrade
Genetički resursi kukuruza kao izvor poboljšanog kvaliteta zrna i tolerantnosti prema suši (MPNTR - 31028)
Integralni sistemi gajenja ratarskih useva: očuvanje biodiverziteta i plodnosti zemljišta (MPNTR - 31037)

Ključne reči: zakasnela fluorescencija hlorofila; Ramanova spektroskopija lista; fotosintetički model; Zea mays L; inbred-linija; hibrid; tilakoidna membrana; pigmentna svojstva; nutritivna vrednost; hrana za ljude i životinje
Sažetak
Uvod/cilj: U ovom radu izlažu se rezultati više različitih istraživanja. Konstatuje se da je oko četiti decenije trajalo selekcionisanje inbred-linija ZPPL 146 i ZPPL 159 i sa njima stvorenih hibrida kukuruza: ZP 633, ZP 735 i ZP 737, prvenstveno namenjenih za isxranu ljudi i domaćih životinja. Metode: Primenom metode rezonantne Ramanove spektroskopije lista inbred-linija kukuruza registrovane su spektralne trake koje ukazuju na konformacione karakteristike molekula karotenoida, ali i drugih jedinjenja (fosfata, glutena i amida III) u listu. Rezultati: U radu je izvršeno sistematsko ispitivanje inbredlinija: ZPPL 146 i ZPPL 159 i hibrida kukuruza: ZP 633, ZP 735 i ZP 737. Konstatovano je da su nove inbred-linije kukuruza: ZPPL 146 i ZPPL 159 bogate karotenoidima i žutim pigmentima. Te linije imaju, u znatnim količinama i vrednostima, i druga relevantna bioaktivna jedninjenja i dobre fizičke karakteristike. Proučavane inbred-linije kukuruza imaju uspravan položaj vršnih listova i spadaju u grupu linija kukuruza sa značajnim karakteristikama fotosintetičkog modela. One su otporne na visoku temperaturu i tolerantne su na sušu. Zaključak: U radu su izložena relevantna svojstva, karakteristike i parametri proučavanih novih inbred-linija kukuruza koja se mogu koristiti u budućnosti u selekcionom procesu. Sa navedenim inbred-linijama kukuruza stvoreni su visokoprinosni i kvalitetni hibridi kukuruza: ZP 633, ZP 735 i ZP 737, koji su prepoznatljivi po svojim kvalitetima,a naročito hibrid ZP 633 za ishranu ljudi (dece i starijih lica). Isto tako, sa agronomsko-veterinarskog stanovišta je potvrđeno da su hibridi ZP 735 i ZP 737 najpogodniji za ishranu domaćih životinja uz programirano korišćenje kukuruzne silaže. Takođe, izložena su relevantna agronomska, morfološka i nutritivna svojstva hibrida kukuruza ZP 633, ZP 735 i ZP 737. Prezentovani su i rezultati o strukturi zrna i visini prinosa za zrno i silažu i kod hibrida ZP 677 i ZP 684, koji se proizvode u Srbiji i zemljama jugoistočne Evrope.

Introduction

The period from 1978 to the present day (2020) has become historically significant because a tremendous success in maize breeding and high quality hybrid seed production was achieved. Because of such activities, over 1500 grain and silage hybrids have been derived (Duvick, 1984; Sprague, 1984; Trifunović, 1986; Dumanović, 1986; Hallauer, 1988) and (Ivanović et al, 1995).

Modern technical and technological prerequisites were provided for carrying out the process of breeding, efficient production of hybrid maize seeds and significant amounts of seeds of commercial and silage hybrids (Kojić & Ivanović, 1986; Petrović et al, 1992; Pejić, 1994; Jovanović, 1996; Jovanović, 1998; Bekrić, 1997; Bekrić, 1999; Dumanović & Pajić, 1998; Jovanović et al, 2000; Radenović & Somborac, 2000; Antov et al, 2004; Dinić & Đorđević, 2005).

In the context of the stated dynamics of the development, interdependent studies of many scientific disciplines (physiology, biochemistry, biophysics, biotechnology, breeding, photosynthesis, Raman spectroscopy, infrared spectra of grain, processing technology of cereals, silage production practices, silage utilisation and food science) have been linked with the aim of modernising and efficient implementation of contemporary programmes on maize breeding and seed production (Radenović, 1994; Pajić et al, 1995; Radenović et al, 2004; Radenović et al, 2008; Radenović et al, 2009; Radenović & Somborac, 2000; Konstantinov et al, 2010). In addition to the outstanding results achieved in the selection of standard grain and maize silage hybrids, there was a pressing need to develop new inbred lines and better quality maize hybrids with an improved chemical composition of the grain, especially in essential bioactive compounds. Moreover, the intensive work has been carried on the improvement and development of new methods for the preservation of plants, especially maize hybrid plants in the form of silage of the whole plant and grain. Silage is biologically fermented or chemically preserved feed of a plant origin. Silage maize growing practices differ, to a certain extent, from the practices used in the commercial maize cultivation. Namely, it is very important to produce the maximum quantity of silage per area unit and it is necessary that the produced silage be of high quality. Therefore, in order to succeed in this, it is necessary to select a plot with good soil properties, use high quality seed, apply the necessary amount of mineral fertilisers, perform proper and timely sowing and apply tested herbicides that have no residual effects and toxic effects on silage mass. All this has to provide silage that contains approximately 50% grain, as it is a prime quality part. Furthermore, it is important that the crop be disease free, so that there are no adverse effects in feeding ruminants and no negative effects on their health, quality of meat and milk, and dairy products. Nowadays, silage is the basis of cost-effective and contemporary animal husbandry and the closest substitute for green forage (Bekrić, 1997; Bekrić, 1999; Dumanović & Pajić, 1998; Pejić, 1994; Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000; Antov et al, 2004; Dinić & Đorđević, 2005; Liu, 2007; Strati et al, 2012; Radenović, 2002; Radenović, 2013; Bacchetti et al, 2013; Đorđević & Dinić, 2003; Kurlich & Juvik, 1999; Luo & Wang, 2012).

To meet many demands, justifiable and increased needs for functional and quality nutrition of people (mainly children and the elderly) and livestock (primarily cows and sheep), it was necessary to select new maize inbred lines with significantly richer pigment-complex properties and the exceptional nutritional value. This aim was achieved with the increased content of carotenoids and other bioactive compounds. With such inbred lines, it was possible to develop high-quality maize hybrids which would meet requirements of medicine, veterinary medicine and agronomy and be necessary for healthy food and feed, which was the objective of the present study.

Materials and methods

Plant material - The genetic and breeding studies of the new maize inbred lines have been performed for over 40 years. These inbreds, future parental forms, primarily ZPPL 146 and ZPPL 159, have increased chemical compositions, whereas the hybrids of high yields and extra quality derived from these inbreds are used as follows: ZP 633 - standard in nutrition of children, the elderly and athletes; products: flour, semolina; ZP 737 - standard in nutrition of fattening chickens up to 1.5-3kg and laying hens; products: ground maize, coarse meal, flour and grain silage; and ZP 735 - standards in nutrition of calves, fattening heifers, dairy cows, sheep, goats and pigs; products: coarse meal, ground maize, grain silage, ear silage and the whole plant silage. In recent times, the hybrids ZP 677 and ZP 684 have also been used for silage. Figure 1 shows the actual appearance of the elite maize inbred lines with erect top leaves, i.e.

Figure 1 Actual appearance of the elite maize inbred lines with erect top leaves ZPPL 146 (A) and ZPPL 159 (B) and the high-quality maize hybrids ZP 633 (C), ZP 735 (D) and ZP 737 (E) with their erect top leaves.
Рис. 1
Внешний вид элитных инбредных линий кукурузы с прямостоячими верхними листьями ZPPL 146 (А), ZPPL 159 (В) и их высококачественных гибридов, ZP 633 (C), ZP 735 (D) и ZP 737 (E) с прямостоячими верхними листьями
Слика 1
Стварни изглед елитних инбред-линија кукуруза са усправним положајем вршних листова: ZPPL 146 (A) и ZPPL 159 (B) и њихових високо-квалитетних хибрида кукуруза: ZP 633 (C), ZP 735 (D) и ZP 737 (E) са усправним положајем вршних листова

ZPPL 146, ZPPL 159, and high-quality maize hybrids ZP 633, ZP 735, and 737 with their erect top leaves.

The observed maize inbred lines and hybrids have the increased content of carotenoids and other bioactive compounds. They have been developed and owned by the Maize Research Institute, Zemun Polje, Belgrade, Serbia.

Methods - Overall studies of the stated new inbred lines and hybrids with erect top leaves developed from these inbreds encompassed several series of experiments in which new and standard methods and procedures were applied.

1. Chemical compositions of the new inbred lines and high-quality maize hybrids

The methods applied to determine the grain chemical composition of the maize inbred lines and hybrids are generally accepted and standardised and already described in detail in previous papers (Radosavljević et al, 2000; Bekrić, 1997; White & Jonson, 2003; AACC, 2013; Strati et al, 2012; Radenović et al, 2010).

2. Resonance Raman spectroscopy method applied to the maize inbred lines

The measurements of resonance Raman spectroscopy of the maize inbred line leaves were done in accordance with the procedure and the method was described in our previously published papers (Radenović et al, 1994; Radenović et al, 1998).

3. The measurement of the angle and the leaf area of the maize inbred lines

This series of experiments was related to studying the erect position of top leaves in the maize inbred lines. A specially designed protractor was used to measure the angle between the position of the above-ear leaf and the position of the plant stalk on the maize inbred lines. The leaf area was measured by the LI-3000 Portable Leaf Area Meter (LI-COR Biosciences, USA). The measurements of the angle between the aboveear leaf and the stalk and the leaf areas were carried out on 122 plants for each maize inbred line during the three-year period. These methodical procedures were described in the previously published papers (Radenović et al, 2009; Radenović et al, 2010).

4. Photosynthetic fluorescence measurements

This series of the experiments was related to photosyntheticfluorescence studies, including thermal processes of delayed chlorophyll fluorescence, critical temperatures (phase transitions), and activation energies. The test maize inbreds were grown in the experimental field of the Maize Research Institute, Zemun Polje. The plants were brought from the experimental field to the laboratory between 7 a.m. and 8 a.m. These plants sampled in the field were transversally cut in the ground internode. In the laboratory, the plants were placed in water along the length of one internode. Prior to the fluorescence experiment, all plants were kept under the black ball glass for two hours. A segment of intact above ear leaves was taken from such plants and placed into a chamber of the phosphoroscope. The intact leaf segments were kept in the chamber (in the dark) for at least 15 minutes, and then the thermal processes of delayed chlorophyll fluorescence were measured. These tests were performed on 111 plants of each maize inbred line. An improved, noninvasive photosynthetic-fluorescence method was applied for these measurements. This method was developed at the Maize Research Institute and was described in the previously published papers (Radenović et al, 2002; Radenović et al, 2004; Radenović et al, 2007; Radenović et al, 2008; Radenović et al, 2010; Radenović et al, 2013).

5. Survey of the breeding and seed production properties of the new maize inbred lines

Since these maize inbred lines with efficient photosynthesis, rich in pigments and with exceptional nutritive qualities are promising, a broad survey of their relevant breeding and seed production properties, traits and parameters obtained by standard methods of ranking (Radenović et al, 2007; Radenović et al, 2008; Radenović et al, 2009; Radenović et al, 2013) are presented in this article.

6. Functional dependence of the yield of the studied maize grain and silage hybrids

Numerous and long-term studies on the yields (t ha-1) of the three high-yielding and high-quality grain and maize silage hybrids (ZP 633, ZP 735, ZP 737) were performed in many locations in Serbia and other countries of Southeastern Europe. Standard methods for maize production, tinning and processing were applied in these studies (Pejić, 1994; Bekrić, 1997; Bekrić, 1999; Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000; Antov et al, 2004; Đorđević & Dinić, 2003; Dinić & Đorđević, 2005; Videnović et al, 2011; Radenović, 2013).

7. Medical, veterinary, agronomic, and nutrition estimation of the need for human and animal nutrition with products based on maize hybrids bred for a specific purpose

7.1. Human nutrition with products based on maize hybrids enriched with pigments and other nutrition ingredients

Empirical efforts to acquire knowledge about the need for maize diet in human nutrition were initiated a long time ago, perhaps 300-400 years ago. Much later, in the 1950s, the scientific literature related to this topic emerged, primarily in medical institutions. However, the authors of this study became interested in this topic in the early 1990s (Radenović, 1991).

7.2. Animal nutrition with products based on maize hybrids bred for silage

It is believed that 1150 years have passed since the first procedures of preserving green crops (Goffart, 1877) and (Fry, 1885). Modern and improved technology of preserving crops by ensiling flourished as late as the early second half of the 20th century (1955-1965) (Bekrić, 1997; Bekrić, 1999; Pejić, 1994; Jovanović, 1998; Jovanović et al, 2000; Đorđević & Dinić, 2003; Dinić & Đorđević, 2005). Modern, intensive and cost-effective production in cattle husbandry can no longer be imagined without silage. Furthermore, the advantages of such feed have been growing in goat and sheep breeding and to a lesser extent in pig breeding (Pejić, 1994; Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000; Đorđević & Dinić, 2003; Dinić & Đorđević, 2005; Radenović, 2013). The authors of this paper became interested in this topic at the beginning of the 21st century (in 2002). At that time, a great number of high-quality maize hybrids intended for production of high-quality silage were developed with the aim to regulate metabolic processes in domestic animals thus improving their growth and quality of meat and milk (Radenović, 2002).

Results and discussion

1. Chemical composition and physical traits of grain of maize inbred lines and high-quality maize hybrids

The results of the studies of the chemical composition and physical traits of the grains of the observed maize inbred lines and hybrids are presented in Table 1.

Table 1. Results obtained in the analyses of the chemical composition and physical traits of the grain of maize inbred lines and hybrids (Zea mays L.) (three-year average,trial field of the Maize Research Institute, Zemun Polje, Belgrade, Serbia)
Таблица 1. Результаты анализа химического состава и физических характеристик зерна элитных инбредных линий и гибридов кукурузы (Zea mays L.) (в среднем за 3 года, опытное поле Института кукурузы «Земун Поле», г. Белград, Сербия)
Табела 1. Резултати просечно трогодишњих анализа хемијског састава и физичких карактеристика зрна инбред-линија и хибрида кукуруза (Zea mays L.)(огледно поље Института за кукуруз, Земун Поље, Београд, Србија)

Сhemical composition and physical traits of the maize (Zea mays L.) grain Published data* Average data of the observed grain for storage in silos of the elite maize (Zea mays L.) inbred lines and hybrids
Range Average Inbred lines Hybrids
ZPPL 146 ZPPL 159 ZP 633 ZP 735 ZP 737
Moisture (%, wet basisa) 7-23 16.0 10.24 10.12 9.90 9.84 10.15
Starch (%) 61-78 71.7 67.80 66.26 68.23 64.39 67.86
Protein (%) 6-12 9.5 10.22 12.57 11.11 12.27 11.57
Fat (oil) (%) 1.0-5.7 4.3 7.53 5.38 6.11 5.82 7.16
Ash (%) 1.1-3.9 1.4 1.48 1.45 1.51 1.54 1.47
Cellulose (%) - 3.0 2.26 2.33 2.37 2.43 2.00
Pentosans (as xylose), % 5.8-6.6 6.2
Fibres, % 8.3-11.9 9.5
Cellulose + lignin, % 3.3-4.3 3.3
Sugars, total (as glucose), % 1.0-3.0 2.6
Yellow pigment, (μg βCE/g d.m.)** 19.00 18.10 27.30 21.90 21.60
Total carotenoids (mg/kg) 12-36 26.0 33.20 31.80 32.40 28.30 27.80
1000-kernel weight (g) 217-438 343.70 277.45 283.03 333.82 295.81 296.95
Test weight (kg/m3) 693-843 791.00 829.84 844.96 809.03 808.27 817.07
Density (g/cm3) 1.21-1.38 1.26 1.27 1.29 1.27 1.28 1.28
Flotation index (%) 0-68 27.10 10.56 10.68 25.12 13.36 7.91
Grinding resistance (%) 7.0-25.8 15.90 8.77 14.33 15.80 13.27 11.07
Hard endosperm fractions (%) 54.3-71.3 59.20 11.00 10.67 9.67 11.33 9.67
Soft endosperm fractions (%) 45.7-28,7 40.80 23.33 18.66 23.33 21.67 23.33
Water absorption index 0.180-0.284 0.245 0.245 0.237 0.215 0.237 0.227

* Source: P.J. White & L.A. Jonson (White & Jonson, 2003).
** Done by the AACC Methods 14-50.01 (AACC, 2013).

The obtained results relate to important chemical and physical constituents.

2. Conformational changes in carotenoid molecules in the leaf ofтхе maize inbred lines

The Raman spectra are very suitable for studying photosynthetic pigments in terms of conformational changes of carotenoid molecules. The authors of the present study have been dealing with this topic for a long period of time (Radenović et al 1994; Radenović et al 1995; Radenović et al 1998).

However, this study will highlight some conformational changes in molecules of carotenoids in the leaf of the observed maize inbred lines. Thus, the following six characteristic resonance Raman spectral bands were established within the 900 cm-1-1800 cm-1 interval of Raman frequencies: 962, 1026, 1160, 1187, 1206, and 1520 cm-1, Figure 2.

Figure 2 Resonance Raman spectrum of the leaf of the maize inbred lines ZPPL 146 and ZPPL 159
Рис. 2
Резонансная рамановская спектроскопия листа инбредной линии кукурузы ZPPL 146 и ZPPL 159.
Слика 2
Резонантни Раманов спектар листа инбред-линија ZPPL 146 и ZPPL 159

Four spectral bands with lower intensities (I926, I1026, I1187, I1206) were caused by conformational changes of phosphates, glycogens, and amides III. The remaining two spectral bands with significantly higher intensities (I1160, I1520) have been regularly analysed in relation to the conformational changes in the carotenoid molecule. It is common to analyse the differences in the intensities of spectral bands (I1520 and I1160) and even more often the differences in their ratio (I1520/I1160). The resonance Raman spectrum of the leaf of the observed inbred lines with dominant spectral bands (I1520 and I1160) is presented. This spectrum conditions the carotenoid molecules placed in the non-polar phase of the thylakoid membrane of the leaf of the inbred lines. In this paper, the effort was made to emphasize the application of resonance Raman spectroscopy in studying important vital functions of leaves of maize inbred lines, especially under agroecological conditions atypical for the maize growing region. Carotenoid molecules (β caroten, C40H56, with the activity of vitamin A, but also two xanthophylls: cryptoxanthin C40H56O and zeaxanthin C40H56O2), since localised in the non-polar phase of the thylakoid membrane of maize inbred leaves, showed to be a very suitable natural probe, capable of contributing to registering not only higher and more significant, but also smaller and finer conformational changes. These changes in the molecular structure of carotenoids may be expressed in the form of bending, stretching, compressing, and physical disruption of chemical bonds, which is caused by intensive actions of environmental factors, unfavourable critical temperatures in the first place. In the end, each conformational change in the carotenoid molecule unconditionally changes the function not only of the carotenoid molecule but also of the thylakoid membrane in leaves of maize inbred lines. Conformational changes in chemical bonds – C = C – are reflected in the spectral band at 1520cm-1. In addition, conformational changes in chemical bonds = C – C = are reflected in the spectral band at 1160cm-1 (Karnauhov, 1988).

3. The measure of the angle and the area of the above-ear leaf of maize inbred lines

The results of the measurements of the angles between the above-ear leaf and the stalk are presented in Table 2 as well as the average leaf areas.

Table 2. Angle between the above-ear leaf and the stalk and the leaf area of maizeinbred lines with efficient photosynthesis
Таблица 2. Угол наклона первого листа над початком и поверхности листьевновых инбредных линий кукурузы с эффективным фотосинтезом
Табела 2. Величина угла првог листа изнад клипа и лисне површине новихинбред-линија кукуруза са ефикасном фотосинтезом

Maize inbred line* FAO maturity group Heterotic origin of the inbred line* Angle of the above-ear leaf, (o) Leaf area of the above-ear leaf (cm2)
σ σ
ZPPL 146 650-700 BSSS, USA Zemun Polje 20.8° 1.2 3762.7 238
ZPPL 159 550-600 Landrace from Argentina (S13) crossed to the in-bred PE 25-10-1, Zemun Polje 21.3° 1.2 2378.1 241

*The observed maize inbred lines represent good heterotic pairs which have goodcombining abilities for grain yield and silage as well as good propagation and high yield.These inbreds are rich in pigments and have extraordinary nutritive qualities.

Based on the obtained angle measurement results, it can be stated that the observed maize inbred lines belong to the group of contemporary inbred lines with erect top leaves and the status of the photosynthetic model.

4. Empirical procedure for photosynthetic and fluorescence studies on the above-ear leaf of maize inbred lines bred for the production of healthy food

The thermal processes of delayed chlorophyll fluorescence of the observed maize inbred lines intentionally selected for developing maize hybrids to be used in the production of various feed and food products were studied in detail. The thermal curve is a curve that shows the changes in the delayed chlorophyll fluorescence level intensity depending on temperature. The trend of its establishment is most often analogous to changes in the duration in seconds for the segments designated with a, b, c, d, e, f, and g, Figure 3, which was determined by the empirical procedure (Radenović et al, 2008, Radenović et al, 2009, Radenović et al, 2010).

Figure 3 Schematic presentation of the empirical procedure of typical changes of delayed chlorophyll fluorescence intensities (IDF) on the intact above-ear leaf of the observed maize inbred lines with significant breeding properties (solid line) and changes of temperatures (dashed line): the curve A indicates induction processes of delayed chlorophyll fluorescence, while the curve B encompasses photosynthetic fluorescencethermal processes of delayed chlorophyll fluorescence. Typical temporal segments (a, b,c, d, e, f, and g) on the thermal curve B correspond to the dynamics of IDF changes at thetime of delayed chlorophyll fluorescence formation. Conformational and functional changes in the thylakoid membrane of the observed maize inbred lines with erect top leaves occur at the interception points of typical temporal segments.
Рис. 3
Схематическое изображение типичных изменений интенсивности замедленной флуоресценции хлорофилла на интактных листьях наблюдаемых инбредных линий кукурузы (сплошная линия) и изменениями температуры (пунктирная линия): кривая A обозначает индукционные процессы замедленной флуоресценции хлорофилла, а кривая B − тепловые процессы замедленной флуоресценции хлорофилла. Типичные временные сегменты (a, b, c, d, e, f и g) на тепловой кривой B соответствуют динамике изменений IDF во время образования замедленной флуоресценции хлорофилла. Конформационные и функциональные изменения тилакоидной мембраны наблюдаемых инбредны хлиний кукурузы с прямостоячими верхними листьями происходят в точках пересечения типичных временных сегментов.
Слика 3
Схематски приказ типичних промена интензитета закаснеле флуоресценције хлорофила на интактном листу проучаваних инбред-линија кукуруза (пуна линија) и промене температуре (испрекидана линија): крива А означава индукционе процесе дела криве закаснеле флуоросценције хлорофила, а крива B обухвата термалне процесе дела криве закаснеле флуоресценције хлорофила. Типични временски сегменти (a, b, c, d, e, f, и g) на термалној кривој В одговарају динамици промена IDF за време формирања закаснеле флуоросценције хлорофила. До конформационих и функционалних промена у тилакоидној мембрани проучаваних инбред-линија кукуруза са усправним положајем вршних листова долази у тачкама интерцепције типичних временских сегмената.

Monitoring the course of the thermal curve and the analysis of the duration of certain segments provided data on the existence of a greater number of critical temperatures (phase transition temperatures) at which greater or smaller structural and functional changes occurred in the thylakoid membrane of the observed maize inbred lines.

In accordance with such information, it is possible to draw a conclusion on their different responses to the phenomena of resistance, drought and high temperature as well as on the phenomenon of their adaptation.

5. The exact temperature dependence of the delayed chlorophyll fluorescence intensity for the thylakoid membrane of new maize inbred lines bred for the production of healthy food

The changes in the intensity of the stationary level of delayed chlorophyll fluorescence (IDF) depending on temperature which ranges from 25ºC to 60ºC were measured. The dynamics of the changes of the temperature dependence for the observed maize inbred lines is presented in Figure 4a and Figure 4b.

Figure 4 Changes in the intensity of the delayed chlorophyll fluorescence (IDF) of the thermal processes depending on temperature in the thylakoid membrane and chloroplasts of the intact above-ear leaf of the new air dried maize inbred lines ZPPL 146 (a) and ZPPL 159 (b).
Рис. 4
Изменение интенсивности замедленной флуоресценции хлорофилла (IDF) тепловых процессов в зависимости от температуры в тилакоидной мембране и хлоропластах интактного первого листа над новыми початками инбредных линий кукурузы ZPPL 146 (а) и ZPPL 159 (б), обработанных воздушной сушкой
Слика 4
Промене интензитета закаснеле флуоресценције хлорофила (IDF) термалних процеса у зависности од температуре у тилакоидној мембрани и хлоропластима интактног првог листа изнад клипа нових инбред-линија кукуруза ZPPL 146 (а) и ZPPL 159 (b) третираних ваздушним сушењем

5.1. The Arrhenius plot for the determination of critical temperatures and conformational changes in chloroplasts and thylakoid membranes of the new maize inbred lines bred for the production of healthy food

The Arrhenius plot is based on the linearisation of the delayed chlorophyll fluorescence exact temperature dependence of the observed maize inbreds. Critical temperatures (phase transition temperatures) at which conformational changes occur in chloroplasts and the thylakoid membrane are determined by the application of the Arrhenius plot. Figure 5a and Figure 5b present the results of the Arrhenius plot application to the observed maize inbred lines.

Figure 5 The change of the logarithm of the delayed chlorophyll fluorescence intensity (Ln IDF) of the thermal processes as a function of the reciprocal temperature value in the thylakoid membrane and chloroplasts of the intact above-ear leaf of the observed air dried maize inbred lines ZPPL 146 (a) and ZPPL 159 (b).
Рис. 5
Изменение логарифма интенсивности замедленной флуоресценции хлорофилла (Ln Izf) тепловых процессов в зависимости от обратного значения температуры в тилакоидной мембране и хлоропластах интактного первого листа над початками наблюдаемых инбредных линий кукурузы ZPPL 146 (а) и ZPPL 159 (б), обработанных воздушной сушкой
Слика 5
Промене логаритма интензитета закаснеле флуоресценције хлорофила (Ln Izf) термалних процеса у зависности од реципрочне вредности температуре у тилакоидној мембрани и хлоропластима интактног првог листа изнад клипа проучаваних инбред-линија кукуруза ZPPL 146 (а) и ZPPL 159 (b) које су третиране ваздушним сушењем

Such dependence (Figure 5a and Figure 5b) is known as the Arrhenius plot for the determination of critical temperatures that cause conformational and functional changes, of chemical nature, in chloroplasts and the thylakoid membrane. Using the Arrhenius plot and linearisation of the exact temperature dependence of DF chlorophyll, all critical temperatures (phase transition temperatures) at which even the smallest conformational change occurred in the thylakoid membrane of the new air dried maize inbred lines were determined.

The values of critical temperatures in °C, their frequency and inter-distance characterise the observed new inbred lines with erect top leaves in relation to their tolerance, resistance and adaptability to increased and high temperatures as well as to drought (Radenović et al, 2013). The Arrhenius plot is based on the existence of straight lines. Each Arrhenius's straight line represents activation energy (Ea). The intercept of two straight lines is denoted by the critical temperature.

The results of Ea values in the ascending and descending parts of the thermal curve are explained by the fact that with the temperature increase, smaller or larger conformational and functional changes occur in pigment molecules (chlorophyll, carotenoids) in the thylakoid membrane and chloroplasts. Due to the changes, these molecules became more reactive thus acquiring additional energy which was used in the recombination process of DF chlorophyll formation (Radenović et al, 2013).

5.2. Activation energy and critical temperatures in the thylakoid membrane of the observed maize inbred lines bred for the production of healthy food

Detailed studies of the thermal processes of delayed chlorophyll fluorescence, and especially the analysis of the experimental thermal curve, encompassed not only the temperature dependence and the Arrhenius plot, but also the estimation of the values of activation energies (Ea) for the critical temperatures (phase transition temperatures) in chloroplasts and the thylakoid membranes of the observed maize inbreds bred for the production of healthy food, i.e. ZPPL 146 (a) and ZPPL 159 (b). The obtained results are shown in Table 3.

Table 3. Changes in activation energies (Ea) and critical temperatures (t°C) during the thermal processes in chloroplasts and the thylakoid membrane of the intact above-ear leaf of air dried maize inbred lines
Таблица 3. Изменение энергий активации (Ea) и критических температур (t°C) при тепловых процессах в хлоропластах и тилакоидной мембране интактного листа над початком инбредных линий, обработанных воздушной сушкой
Табела 3. Промена енергија активације (Ea) и критичних температура (t°C) за време термалних процеса у хлоропластима и тилакоидној мембрани интактног првог листа изнад клипа инбред-линија кукуруза третираног ваздушнимсушењем

ZPPL 146 ZPPL 159
Ea, kJ/mol t °C Ea, kJ/mol t °C
/ 33.5 / 25
54.5 40.0 32.0 30
105.0 44.0 100.3 38
174.0 46.0 176.7 42
41.0 47.0 259.9 47
128.5 49.0 / 50
326.0 /

6. Brief survey of the breeding and seed production traits of the new maize inbred lines with efficient photosynthesis

The observed new maize inbred lines ZPPL 146 and ZPPL 159 are very promising in the process of maize breeding. For these reasons, some relevant observations of their selected traits, performances, and parameters are presented in Table 4.

Table 4. Relevant breeding and seed production traits of the new maize inbred lines with photosynthetic efficiency
Таблица 4. Релевантные селекционные и семеноводческие признаки новых инбредных линий кукурузы с эффективным фотосинтезом
Табела 4. Релевантна селекциона и семенарска својства нових инбред-линија кукуруза са ефикасном фотосинтезом

Ordinal numeral Name and definition of a trait Brief description of the breeding and seed production traits of the maize inbred lines
ZPPL 146 ZPPL 159
1. Heterotic origin BSSS, USA, Zemun Polje Landrace from Argentina (S13), crossed to the inbred PE 25-10-1, Zemun Polje
2. FAO maturity group 650-700 550-600
3. Grain yield ha-1 in kg at 14% moisture a) dry land farming b) irrigation 3500
5000
2000
3000
4. Number of plants ha-1 at harvest a) dry land farming b) irrigation 50000
60000
50000
60000
5. Stalk properties Stalk is moderately high with a prolific trait. Tassel has an elongated central branch with fewer side branches Stalk is short. Tassel has closed side branches that shed for a long time
6. Stalk resistance to lodging Inbred is resistant to lodging Inbred is resistant to lodging
7. Erect position of above ear leaves first leaf < 20.8°
second leaf < 17.9°
third leaf < 15.3°
first leaf < 21.3°
second leaf < 18.1°
third leaf < 15.4°
8. Stay green Leaf remained green until harvest Leaf remained moderately green until harvest
9. Tolerance of the inbred to stress factors (drought and high temperatures, etc.) Inbred is tolerant to drought and high temperatures Inbred is tolerant to drought and high temperatures
10. Kernel traits and cob colour Semi-dent type, orange kernels, white cob Semi-flint, orange kernels, red cob
11. % grain moisture at harvest 20-25 20-25
12. Dry down rate in the stage of grain maturing Dry down rate is not fast, but hybrids are suited for silage Dry down rate is not fast, but hybrids are suited for silage
13. Harvest of inbreds Harvest is easy Harvest is easy
14. Emergence of inbreds Inbred emerges well Inbred emerges well
15. Early growth of inbreds Early growth is moderate Early growth is moderate
16. Suitability of the hybrid grain for nutrition of ruminants and nonruminants Grain of the hybrid developed from this inbred is suitable for nutrition of ruminants, nonruminants, human nutrition and for industrial processing Grain of the hybrid developed from this inbred is suitable for nutrition of ruminants, nonruminants, human nutrition and for industrial processing
17. Carotene content in the inbred grain 33.2 (mg/kg) a) 31.8 (mg/kg)
18. Suitability of the inbred for the development of silage hybrids Inbred is very suitable for developing silage hybrids Inbred is very suitable for developing silage hybrids
19. Digestibility of hybrids Hybrids developed from this inbred have good digestibility of the whole plant and of the grain Hybrids developed from this inbred have good digestibility of the whole plant and of the grain

6. Functional dependence of the yield of the observed grain and maize silage hybrids

The high-yielding and high-quality maize hybrids ZP 735, ZP 737, ZP 677, and ZP 684 are mainly intended for grain and silage production of grain, ear and the whole plant, under the agroecological conditions of Southeastern Europe. According to our studies and good agricultural practice, the hybrid ZP 633 is very suitable for human diet (Radenović, 1991). However, the hybrids ZP 735, ZP 737, ZP 677, and ZP 684 are significantly better for nutrition of domestic animals through high-quality grain silage and even more often the whole plant silage. The important agronomic and morphological traits of these hybrids are presented in Table 5, Table 6, Table 7, Table 8, Table 9.

Table 5. Agronomic traits of the observed maize hybrids
Таблица 5. Агрономические характеристики испытуемых гибридов кукурузы
Табела 5. Агрономске карактеристике испитиваних хибрида кукуруза

Agronomic traits Hybrid
ZP 633 ZP 735 ZP 737
Hybrid type SC SC SC
FAO maturity group 550-650 750-850 750-850
Plant height (cm) 250 280 290
Ear height (cm) 120 130 135
1000-kernel weight (g) 380 370 370
Kernel type semi-dent dent dent
Sowing density of silage hybrid (x103 plants ha-1) 60-70 70-75 70-75
Leaf position on the plant semi-erect to erect semi-erect to erect semi-erect to erect
Tolerance to drought good good good
Tolerance to diseases good good good
Leaf appearance at harvest stay green stay green stay green
Hybrid growing regions (altitude, m) 300-400 250-400 250-400
Hybrid biomass yield (t ha-1) 60-65 75-80 75-80
Hybrid grain yield (t ha-1) 7.819* 8.108** 12.732**

* Hybrid yield achieved in 30 locations in Serbia in the 2008-2011 period
** Hybrid yield achieved in 6 locations in Greece in the 2006-2009 period

Table 6. Ear morphological traits of the observed maize hybrids with a grain structure
Таблица 6. Морфологические характеристики испытуемых початка иструктуры строения зерна гибридов кукурузы
Табела 6. Морфолошке карактеристике клипа испитиваних хибрида кукуруза саструктуром зрна

Traits Hybrid
ZP 633 ZP 735 ZP 737
Grain moisture (%) 18 19 20
Ear length (cm) 22 25 25
Ear weight (g) 252.3 286.4 226.7
Rows per ear 16 18 18
Kernel row number 700 800 850
Kernel weight on ear (g) 228.4 248.4 200.4
% kernel pericarp on ear 5.3 6.5 4.6
% kernel embryo on ear 11.3 12.1 10.7
% kernel endosperm on ear 83.4 81.4 84.7

Table 7. Whole plant silage yield depending on the maize hybrid sowing density
Таблица 7. Выход цельнозернового силоса в зависимости от плотности посева гибрида кукурузы
Табела 7. Приноси силаже целе биљке у зависности од густине усева испитиваних хибрида кукуруза

Hybrid Sowing density (000/ha) Grain moisture in silage period (%)
55 60 65 70
Whole plant silage yield (t/ha) Whole plant silage yield (t/ha) Whole plant silage yield (t/ha) Whole plant silage yield (t/ha)
ZP 677 66.60 71.80 76.20 78.60 28.5
ZP 684 56.10 61.80 66.09 72.40 29.3
ZP 735 62.42 67.62 72.82 77.28 31.4
ZP 737 64.50 69.50 74.70 78.90 32.1

Table 8. Yield of fresh matter, dry matter and digestible dry matter of the observed maize hybrids sown at the common sowing density under arid conditions
Таблица 8. Выход зеленой массы, сухого и легкоусвыояемого вещества из испытуемых гибридов кукурузы, засеянных при обычной густоте посева в условиях засухи
Табела 8. Принос зелене масе биљака, суве материје и сварљиве суве материје за проучаване хибриде кукуруза на уобичајеној густини биљака у аридним условима

Hybrid Fresh matter yield (t∙ha-1) Dry matter yield
Whole plant yield (t∙ha-1) Plant without ear yield (t∙ha-1) Ear yield (t∙ha-1) Digestible dry matter yield (t∙ha-1)
ZP 677 76,2 29,7 11,8 17,9 19,9
ZP 684 66,0 29,0 11,1 17,9 19,1
ZP 735 64,2 23,7 10,8 12,9 12,2
ZP 737 66,1 25,1 13,8 11,3 15,9

Table 9. Content of dry matter, lignocellulosic fibres and dry matter digestibility of the observed maize hybrids*
Таблица 9. Содержание сухого вещества, лигноцеллюлозных волокон и усвояемость сухого вещества испытуемых гибридов кукурузы*
Табела 9. Садржај суве материје и лигноцелулозних влакана и сварљивост суве материје проучаваних хибрида кукуруза

Hybrid Whole plant dry matter content (%) Content of lignocellulosic fibres (%) Dry matter digestibility (%)
NDF* ADF* ADL* Hemicellulose* Cellulose*
ZP 677 38.96 41.09 19.51 1.68 21.58 17.83 68.29
ZP 684 44.02 39.46 18.40 1.50 21.06 16.90 65.85
ZP 735 35.58 60.10 32.07 3.06 28.03 29.01 51.30
ZP 737 38.00 42.90 22.01 3.54 18.58 18.58 63.51

*Source of data, abbreviations and explanations: The analyses of contents of NDF, ADF and ADL were performed according to the method of Van Soest P. J. (Van Soest, 1963); dry matter content was established according to the Rulebook on Sampling Methods and Methods of Physical, Chemical and Microbiological Analyses of Animal Feed (Službeni list SFRJ, 15/87) and dry matter digestibility was obtained by the INRA method, whereas the content of hemicellulose and cellulose was computed (Hemicellulose = NDF – ADF, and Cellulose = ADF - ADL). NDF – neutral detergent fibres; ADF – acid detergent fibres; ADL - acid detergent lignin (72% sulphuric acid)

The results of the silage yields of the whole plant as a function of the sowing density of the observed maize hybrids (Table 7) should be taken conditionally. They indicate a possible trend of silage yield increase of the whole plant depending on the crop densities. It should be noted that the silage yield of the whole plant depended, to a large extent, on the type of soil, supply of nutrients, crop protection products, water and other measures within contemporary crop growing practices (Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000; Antov et al, 2004; Dinić & Đorđević, 2005; Radenović, 2013; Đorđević & Dinić, 2003).

According to the data presented in Table 5, Table 6, Table 7, Table 8 and Table 9, it is noticeable that the observed hybrids belong to long-season hybrids with a modern architecture, leaves that remain green and are rich in lignocellulosic fibres. Moreover, these hybrids have more than 50% of grain dry matter in dry matter of the whole plant, which is very important for silage quality. In addition, the embryo content in grain amounts to above 10%, which is especially important for the quality of nutritive values of hybrids in nutrition of people (especially children and the elderly) (Radenović, 1991) but also in nutrition of livestock (particularly cows and sheep, chicks and laying hens) (Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000). The results on silage yields of grain, ear and the whole plant and grain moisture in the silage period are important for dry matter yield, digestible matter yield and the content of dry matter and lignocellulosic fibres (Table 7, Table 8, Table 9).

After 1950, from the initial procedures of plant ensiling, the technology of fodder tinning by ensiling flourished only in the period from 1955 to 1965. Modern, intensive and economical production in cattle breeding can no longer be imagined without ensiled fodder. Moreover, the importance of such feed has been increasing in sheep and goat breeding, and to a lesser extent in pig breeding (Pejić, 1994; Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000; Dinić & Đorđević, 2005; Radenović et al, 2013; Đorđević & Dinić, 2003). The authors of this study became interested in this topic in the beginning of 2002. Since then, a large number of quality maize hybrids have been developed for the production of high-quality silage in order to regulate the metabolic processes of domestic animals and thus improve their gain in weight and the quality of meat and milk (Radenović et al, 2002), (Radenović, 2002).

It is well known that maize is one of the most suitable field crops for the production of silage for ruminants. This is important for several reasons. First, very high yields of green mass are recorded in maize. It is also important that more than 50% of grain dry matter participate in the dry matter of the whole plant, which is an excellent prerequisite for the production of high quality silage. Ruminants need lignocellulosic fibres for the activity of the rumen microflora and these fibres are mainly found in maize stalks, leaves, husk, and cobs (lignocellulosic parts of the plant) (Table 9). On the other hand, starch, proteins and oils are predominantly found in the maize grain (Table 1). With the addition of some other micronutrients, maize silage prepared in this way presents a modern way of ruminants feeding. It is particularly important that such a way of animal feeding is very economical, because the process of silage preparation is completely mechanised, while the way of storing and its taking during the use is also simple.

According to the previous studies (Jovanović, 1996; Jovanović, 1998; Jovanović et al, 2000), the observed hybrids (ZP 677, ZP 684, ZP 735 and ZP 737) have significantly better digestibility than some short-season hybrids, and therefore they belong to the group of the highest quality silage hybrids. It is this fact that indicates the higher nutritional value of these hybrids, which directly affects the productive performances of ruminants. Based on our studies (Radenović, 2002; Radenović, 2013), the hybrids ZP 677, ZP 684, ZP 735, and ZP 737 had satisfactory yields of green mass silage under the conditions of Leskovac with the application of standard cropping practices and without irrigation. According to the obtained results, the highest yield of green mass was recorded in the maize hybrid ZP 677. However, to draw the final conclusion on which hybrid is more suitable for silage, grain yield as well as silage digestibility should be taken into account. Since these are long-season hybrids (FAO maturity group 750-850), they have a very developed leaf mass and the intensive photosynthetic activity. This, among other things, classifies them into a group of hybrids most suitable for the silage production under the climate conditions of Serbia and Southeastern Europe (Greece, Bulgaria, and Turkey).

As already mentioned, a huge success has been achieved in maize breeding and the production of high quality foundation seed and hybrid seed in the last 42 years. Furthermore, a great success was achieved in modern technologies for the commercial maize production. Since 1978, the number of maize plants per area unit has been significantly increased by the application of the new maize breeding programme. This programme, known as a "plant density" breeding programme, directly affected the increase of yield of both foundation and hybrid seeds as well as the yield of commercial maize (Radenović et al, 2004; Radenović et al, 1978). A few years later, the breeding programme for the development of maize inbred lines with erect top leaves - inbreds with more efficient photosynthesis - was implemented (Radenović et al 2004; Radenović et al 2008; Radenović et al 2009; Radenović et al 2007). Some of these inbred lines with the erect top leaves were thought to be the closest to the assumed photosynthetic maize model. At the same time, the breeding programme for maize inbreds rich in pigments and other chemical properties and excellent nutritional values was initiated (Kojić & Ivanović, 1986; Petrović et al, 1992; Pejić, 1994; Jovanović, 1996; Jovanović, 1998; Dumanović & Pajić, 1998; Jovanović et al, 2000; Dinić & Đorđević, 2005; Pajić et al, 1995; Liu, 2007; Strati et al, 2012; Tyutyaev et al, 2015; Đorđević & Dinić, 2003; Kurlich & Juvik, 1999; Granado et al, 2003; Luo & Wang, 2012).

This study was an attempt to answer the following question by using different interdependent tests and analyses: „Is there a reliable and dominant trait (one or more) of the observed maize inbred lines rich in the pigment complex that would be the basis for the development of new extra-quality maize hybrids that would be suitable for human diet and nutrition of domestic animals?“ The analysis of the presented overall results, obtained in the series of experiments, can easily give the positive answer to this question. Consequently, the new maize inbred lines (ZPPL 146 and ZPPL 159) and the hybrids developed from them (ZP 633, ZP 735 and ZP 737) are the best confirmation of the stated. The bred inbred lines and hybrids developed from them are rich in pigments, have significant nutritive values, especially of carotenoids that give the colour (Abdel-Aal et al, 2006) to cereal kernels used in the nutrition of poultry. Carotenoids have many biological functions in both people and animals (Strati et al, 2012; Kurlich & Juvik, 1999; Granado et al, 2003; Bacchetti et al, 2013). This aspect of the observed maize inbred lines and hybrids will get priority within the healthy extra-quality maize-based diet for people and nutrition for animals.

Conclusions

Based on the presented numerous and diverse results of the studies of the new inbred lines (ZPPL 146 and ZPPL 159) and the maize hybrids developed from these inbreds (ZP 633, ZP 735 and ZP 737) that have high nutritive values, are rich in pigments and, in accordance with their chemical composition, have efficient photosynthesis and other relevant parameters characteristic for the best standard maize hybrids (ZP 677 and ZP 684) for silage of grain, ear and the whole plant, the following can be concluded:

  • Selected new, unique maize inbred lines (ZPPL 146 and ZPPL 159), rich in carotenoids, yellow pigments, also have significant amounts of other relevant bioactive compounds and good physical traits.

  • Observed inbred lines have erect top leaves and are classified into a group of maize inbreds with significant properties of the photosynthetic model - they are high yielding and tolerant to high temperatures and drought.

  • Spectral bands pointing to the conformational characteristics of molecules of carotenoids but also other compounds (phosphates, glutens, and amides III) were established by the resonance Raman spectroscopy method applied to the leaf of the maize inbred lines.

  • Relevant traits, properties and parameters of the observed new maize inbred lines that can be successfully used in the breeding process are presented.

  • These maize inbred lines were used to develop high yielding and extra quality maize hybrids (ZP 633, ZP 735 and ZP 737) that are recognisable for their quality. The hybrid ZP 633 is particularly recognisable in human nutrition (children and the elderly). Furthermore, in relation to veterinary and agronomic estimations, the hybrids ZP 735 and ZP 737 are the most suitable for feeding domestic animals with a programmed use of maize silage, ground maize and coarse meal.

  • Relevant agronomic, morphological and nutritive properties of the maize hybrids ZP 677, ZP 684, ZP 735 and ZP 737 are presented. Moreover, the results regarding the grain structure and grain and silage yields obtained in the regions of Serbia and Southeastern Europe (Greece, Bulgaria, and Turkey) are also displayed.

  • All studied maize hybrids (ZP 633, ZP 735, ZP 737, ZP 677, and ZP 684) are intended for large-scale production of flour, semolina, ground maize, silage of grain, ear and the whole plant, which provides healthy and extra quality food and feed.

Dodatak

Acknowledgement

These studies have been financially supported mainly by the Maize Research Institute „Zemun Polje“, Belgrade, and partly by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects 03E211, 03E22, TR-20014, reference numbers 31028 and 31037).

Special acknowledgement

The authors express deep gratitude and appreciation to Dr. Obrad Stojnić (1960-1997) for his remarkable contribution to the development of Serbian maize breeding and selection. Had his life not been prematurely and forcibly interrupted, his scientific results in maize breeding would have been even more successful.

Even so, he will be always remembered for his deeds - the Serbian maize breeding has a leading place in Europe (dr Obrad Stojnić).

References

American Association of Cereal Chemists International (AACC). (2013). AACC International Official Method 14-50.01. In: Approved Methods of the American Association of Cereal Chemists. St. Paul, Minnesota, USA.
Antov, G., Čobić, T., & Antov, A. (2004). Siliranje i silaže. Novi Sad: Graph Style.
Bacchetti, T., Masciangelo, S., Micheletti, A., & Ferretti, G. (2013). Carotenoids, phenolic compounds and antioxidant capacity of five local Italian corn (Zea mays L.) kernels. Journal of Nutrition & Food Sciences, 3(6), 1-4. [Crossref]
Bekrić, V. (1997). Upotreba kukuruza. ( pp. 201-204). Belgrade: Maize Research Institute 'Zemun Polje'.
Bekrić, V. (1999). Industrijska proizvodnja stočne hrane. Belgrade: Maize Research Institute 'Zemun Polje'.
Christoper, Y.J., & Rabbalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem, 54(13), 4696-4704. [Crossref]
Dinić, B., & Đorđević, N. (2005). Pripremanje i korišćenje silaže. Belgrade: Institut za istraživanje u poljoprivredi 'Srbija'.
Đorđević, N., & Dinić, B. (2003). Siliranje leguminoza. Belgrade: Vizartis.
Dumanović, J. (1986). Savremeni programi oplemenjivanja kukuruza. In: Proceedings of Genetika i oplemenjivanje kukuruza -dostignuća i nove mogućnosti, Belgrade, December 11-12. (pp. 77-94).
Dumanović, J., & Pajić, Z. (1998). Specifični tipovi kukuruz. Belgrade: Maize Research Institute 'Zemun Polje'.
Duvick, D.N. (1984). Genetic Contribution to Yield Gains of U.S. Hybrid Maize, 1930 to 1980. In: W.R. Fehr, (Ed.). Genetic Contributions to Yield Gains of Five Major Crop Plants, Chapter 2. (pp. 15-47). Madison, WI: American Society of Agronomy - Crop Science Society of America (CSSA). [Crossref]
Granado, F., Olmedilla, B., & Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. Br J Nutr, 90(3), 487-502. [Crossref]
Hallauer, A.R. (1988). Modern methods in maize breeding. In: Proceedings of Euromaize '88 -Maize Breeding and Maize Production, Belgrade, October 6-8.
Ivanović, M., Petrović, R., Drinić, G., Trifunović, V., Kojić, L., Vuković, M., Mišović, M., Radović, G., Ristanović, D., Pajić, Z., & Trifunović, B.V. (1995). Pedeset godina selekcije ZP hibrida kukuruza. In: Proceedings of Simpozijum sa međunarodnim učešćem 'Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza -50 godina Instituta za kukuruz 'Zemun Polje', Belgrade, September 28-29. (pp. 3-16).
Jovanović, R. (1996). Ishrana ovaca. Novi Sad: S Print.
Jovanović, R. (1998). Ishrana krava. Novi Sad: Stylos.
Jovanović, R., Dujić, D., & Glamočić, D. (2000). Ishrana domaćih životinja. Novi Sad: Stylos.
Karnauhov, V.N. (1988). Biologicheskie funkcii karotenoidov. Moscow: Nauka.
Kojić, L., & Ivanović, M. (1986). Dugoročni programi oplemenjivanja kukuruza. In: Proceedings of Genetika i oplemenjivanje kukuruza - dostignuća i nove mogućnosti, Belgrade, December 11-12. (pp. 11-12).
Konstantinov, K., Mladenović-Drinić, S., Anđelković, V., & Babić, M. (2010). Ethics in scientific results application: Gene and life forms patenting. Genetika, 42(1), 193-208. [Crossref]
Kurlich, A.C., & Juvik, J.A. (1999). Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem, 47(5), 1948-1955. [Crossref]
Liu, R.H. (2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46(3), 207-219. [Crossref]
Luo, Y., & Wang, Q. (2012). Bioactive compounds in corn. In: L. Yu, R. Tsao, & F. Shahidi, (Ed.). Cereals and pulses: Nutraceutical properties and health benefits. (pp. 85-103). Hoboken, New Jersey: John Wiley & Sons, Inc.
Pajić, Z., Mišović, M., Dumanović, J., Mišević, D., Babić, M., & Saratlić, G. (1995). Selekcija kukuruza specifičnih svojstava i namene. In: Proceedings of Simpozijum sa međunarodnim učešćem 'Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza -50 godina Instituta za kukuruz 'Zemun Polje', Belgrade, September 28-29. (pp. 229-237).
Pejić, Đ. (1994). Silažni kukuruz -tehnologija proizvodnje i siliranja. Belgrade: Maize Research Institute 'Zemun Polje'.
Petrović, R., Filipović, M., & Vidaković, M. (1992). Identifikacija izvora koji sadrže poželjne alele za poboljšanje roditeljskih komponenata elitnih hibrida kukuruza (Zea Mays L.). Genetika, 24(2), 115-126,.
Pravilnik o metodama uzimanja uzoraka i metodama fizičkih, hemijskih i mikrobioloških analiza stočne hrane. (1987). Službeni list SFRJ, Belgrade, 15.
Radenović, Č. (1991). Programirana ishrana dece sa kukuruzom doprinosi regulisanju metabolizma njihovog efikasnog rastenja i razvića. Belgrade: Society of Biophysicists of Serbia.
Radenović, Č. (1994). Review, a study of delayed fluorescence in plant models: photosynthetic, transportation and membrane processes. Journal of the Serbian Chemical Society, 59(9), 595-617.
Radenović, Č. (2002). Programirana ishrana domaćih životinja (goveda i ovce) silažom od kukuruza -doprinos regulisanju metabolizma njihovog prirasta i kvalitetu mesa i mleka. Belgrade: Society of Biophysicists of Serbia.
Radenović, Č., & Somborac, M. (2000). Kukuruz na pragu trećeg milenijuma - sećanja, kazivanja i predviđanja. Belgrade: Maize Research Institute 'Zemun Polje'.
Radenović, Č., Babić, M., Delić, N., Šatarić, I., & Kojić, L. (2002). Novyj fotosintetichesko-bioljuminescentnyj metod v selekcii kukuruzy. Kukuruza i sorgo, 4, 21-24.
Radenović, Č., Babić, M., Hojka, Z., Stanković, G., Trifunović, B.V., Ristanović, D., Delić, N., & Selaković, D. (2004). Properties of maize inbred lines with erect leaves as efficient photomodels in breeding. Doklady Rossijskoj akademii sel'skohozâjstvennyh nauk, 2, 7-9. Retrieved from https://www.elibrary.ru/item.asp?id=18281407 on 15 November 2020.
Radenović, Č., Filipović, M., & Babić, M. (2013). Međuzavisnost procesa zakasnele fluorescencije hlorofila, fotosinteze i oplemenjivanja kukuruza. Novi Sad & Belgrade: Matica srpska & Maize Research Institute 'Zemun Polje'.
Radenović, Č., Filipović, M., Anđeković, V., Babić, M., & Radojčić, A. (2009). Significant breeding properties of inbred maize lines as the basis for creating new, higher yielding hybrids. Russian Agricultural Sciences, 35(6), 374-377. [Crossref]
Radenović, Č., Grodzinskij, D.M., Filipović, M., Radosavljević, M., Videnović, Ž., Denić, M., & Čamdžija, Z. (2010). The prestigious maize inbred lines and hybrids with erect top leaves are characterised by a property of an efficient photosynthetic model and a satisfactory base for the further progress in breeding and selection. Plant Physiology and Genetics, 42(3), 187-201.
Radenović, Č., Jeremić, M., Maximov, G.V., Filipovović, M., Trifunović, B.V., & Mišović, M.M. (1994). Mogućnost korišćenja ramanske spektroskopije u proučavanju otpornosti inbred linija kukuruza prema uslovima stresa. Savremena poljoprivreda, 42(1-2), 5-19,.
Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M.M., & Selaković, D. (1998). Ressonance raman spectra of carotenodes in the maize kernel: A contribution to the evaluation of the kernels resistence to the temperature and the chemical composition of soil. Zbornik Matice srpske za prirodne nauke, 95, 41-50.
Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M.M., Selaković, D., & Trifunović, B.V. (1995). Rezonantni ramanski spektri semena kukuruza i njihova primena u proučavanju životnih funkcija. In: Proceedings of Simpozijum sa međunarodnim učešćem 'Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza -50 godina Instituta za kukuruz 'Zemun Polje', Belgrade, September 28-29. (pp. 291-296).
Radenović, Č., Konstantinov, K., Delić, N., & Stanković, G. (2007). Photosynthetic and bioluminiscence properties of maize inbred lines with upright leaves. Maydica, 52(3), 347-356.
Radenović, Č., Ristanović, D., & Trifunović, V. (1978). The theoretical and the development programme on the increase of the plant number per area unit for the development of erect leaf maize lines and for their more effective application in breeding. Belgrade: Maize Research Institute 'Zemun Polje'.
Radenović, Č.N. (2013). Deset godina proizvodnje hibrida kukuruza za zrno i silažu u agroekološkim uslovima - Puste Reke, Toplice i Dubočice. Programirana kampanja za ishranu ljudi sa proizvodima od kukuruza i domaćih životinja sa kukuruznom silažom. Belgrade: Society of Biophysicists of Serbia.
Radenović, Č.N., Filipović, M., Babić, M., Stanković, G., Radojčić, A., Sečanski, M., Pavlov, J., Radojčić, B.D., & Selaković, D. (2008). Actual prestigious properties of maize inbred lines: A good initial basis for the efficient development of new and yielding maize hybrids. Genetika, 40(2), 121-133. [Crossref]
Radenović, Č.N., Šatarić, I., Husić, I., Mišović, M.M., Filipović, M., & Kojić, L. (2000). A study of functioning of thylakoid membranes in inbred lines of maize (Zea mays L.). Genetika, 32(3), 377-386. Retrieved from http://www.dgsgenetika.org.rs/abstrakti/vol32_2000_no3_en.htm#Rad13 on 15 November 2020.
Radosavljević, M., Bekrić, V., Božović, I., & Jakovljević, J. (2000). Physical and chemical properties of various corn genotypes as a criterion of technological quality. Genetika, 32(3), 319-329. Retrieved from http://www.dgsgenetika.org.rs/abstrakti/vol32_2000_no3_en.htm#Rad9 on 15 November 2020.
Sprague, G.F. (1984). Organization of breeding programs. In: 20th Ann. Illinois Corn Breeding School, USA. (p. 20).
Strati, I.F., Sinanoglou, V.J., Kora, L., Miniadis-Meimaroglou, S., & Oreopoulou, V. (2012). Carotenoids from foods of plant, animal and marine origin: An efficient HPLC-DAD separation method. Foods, 1(1), 52-65. [Crossref]
Trifunović, V. (1986). Četrdeset godina moderne selekcije kukuruza u Jugoslaviji. In: Proceedings of Genetika i oplemenjivanje kukuruza -dostignuća i nove mogućnosti, Belgrade, December 11-12. (pp. 5-46).
Tyutyaev, E.V., Shutova, V.V., Maksimov, G.V., Radenovic, C.N., & Grodzinskij, D.M. (2015). State of photosynthetical pigments in leaves of inbred lines and hybrids of maize. Fiziologija rastenij i genetika / Fiziologiâ rastenij i genetika, 47(2), 147-159. Retrieved from https://core.ac.uk/download/pdf/232903699.pdf on 15 November 2020.
van Soest, P.J. (1963). Use of detergents in the analysis of fibrous feeds: II: A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, 46, 829-835. Retrieved from https://catalogo.latu.org.uy/opac_css/doc_num.php?explnum_id=1479 on 15 November 2020.
Videnović, Ž., Simić, M., Srdić, J., & Dumanović, Z. (2011). Long term effects of different soil tillage systems on maize (Zea mays L.) yields. Plant, Soil and Environment, 57(4), 186-192. [Crossref]
White, P.J., & Johnson, L.A. (2003). Corn: Chemistri aned technology. ( pp. 71-101). Eagan, Minnesota, USA: American Association of Cereal Chemists.
Reference
*** (1987) Pravilnik o metodama uzimanja uzoraka i metodama fizičkih, hemijskih i mikrobioloških analiza stočne hrane. Službeni list SFRJ, Belgrade, 15
Abdel-Aal E-S.M., Christoper, Y.J., Rabbalski, I. (2006) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54(13): 4696-4704
American Association of Cereal Chemists International (AACC) (2013) AACC International Official Method 14-50.01. u: Approved Methods of the American Association of Cereal Chemists, St. Paul, Minnesota, USA, tenth ed
Antov, G., Čobić, T., Antov, A. (2004) Siliranje i silaže. Novi Sad: Graph Style
Bacchetti, T., Masciangelo, S., Micheletti, A., Ferretti, G. (2013) Carotenoids, phenolic compounds and antioxidant capacity of five local Italian corn (Zea mays L.) kernels. Journal of Nutrition & Food Sciences, 3(6): 1-4
Bekrić, V. (1997) Upotreba kukuruza. Belgrade: Maize Research Institute 'Zemun Polje', pp.201-204, in Serbian
Bekrić, V. (1999) Industrijska proizvodnja stočne hrane. Belgrade: Maize Research Institute 'Zemun Polje', in Serbian
Dinić, B., Đorđević, N. (2005) Pripremanje i korišćenje silaže. Belgrade: Institut za istraživanje u poljoprivredi 'Srbija', in Serbian
Dumanović, J., Pajić, Z. (1998) Specifični tipovi kukuruz. Belgrade: Maize Research Institute 'Zemun Polje', in Serbian
Dumanović, J. (1986) Savremeni programi oplemenjivanja kukuruza. u: Proceedings of Genetika i oplemenjivanje kukuruza -dostignuća i nove mogućnosti, Belgrade, December 11-12, pp.77-94, in Serbian
Duvick, D.N. (1984) Genetic Contribution to Yield Gains of U.S. Hybrid Maize, 1930 to 1980. u: Fehr W.R. [ur.] Genetic Contributions to Yield Gains of Five Major Crop Plants, Madison, WI: American Society of Agronomy - Crop Science Society of America (CSSA), Volume 7, Chapter 2, pp.15-47, Special Publications
Đorđević, N., Dinić, B. (2003) Siliranje leguminoza. Belgrade: Vizartis, in Serbian
Granado, F., Olmedilla, B., Blanco, I. (2003) Nutritional and clinical relevance of lutein in human health. British journal of Nutrition, 90(3): 487-502
Hallauer, A.R. (1988) Modern methods in maize breeding. u: Proceedings of Euromaize '88 -Maize Breeding and Maize Production, Belgrade, October 6-8
Ivanović, M., Petrović, R., Drinić, G., Trifunović, V., Kojić, L., Vuković, M., Mišović, M., Radović, G., Ristanović, D., Pajić, Z., Trifunović, B.V. (1995) Pedeset godina selekcije ZP hibrida kukuruza. u: Proceedings of Simpozijum sa međunarodnim učešćem 'Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza -50 godina Instituta za kukuruz 'Zemun Polje', Belgrade, September 28-29, pp.3-16, in Serbian
Jovanović, R. (1996) Ishrana ovaca. Novi Sad: S Print, in Serbian
Jovanović, R. (1998) Ishrana krava. Novi Sad: Stylos, in Serbian
Jovanović, R., Dujić, D., Glamočić, D. (2000) Ishrana domaćih životinja. Novi Sad: Stylos, in Serbian
Karnauhov, V.N. (1988) Biologicheskie funkcii karotenoidov. Moscow: Nauka, in Russian
Kojić, L., Ivanović, M. (1986) Dugoročni programi oplemenjivanja kukuruza. u: Proceedings of Genetika i oplemenjivanje kukuruza -dostignuća i nove mogućnosti, Belgrade, December 11-12, pp. 11-12, in Serbian
Konstantinov, K., Mladenović-Drinić, S., Anđelković, V., Babić, M. (2010) Ethics in scientific results application: Gene and life forms patenting. Genetika, vol. 42, br. 1, str. 193-208
Kurlich, A.C., Juvik, J.A. (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. Journal of Agricultural and Food Chemistry, 47(5): 1948-1955
Liu, R.H. (2007) Whole grain phytochemicals and health. Journal of Cereal Science, 46(3): 207-219
Luo, Y., Wang, Q. (2012) Bioactive compounds in corn. u: Yu L., Tsao R., Shahidi F. [ur.] Cereals and pulses: Nutraceutical properties and health benefits, Hoboken, New Jersey: John Wiley & Sons, Inc, pp. 85-103
Pajić, Z., Mišović, M., Dumanović, J., Mišević, D., Babić, M., Saratlić, G. (1995) Selekcija kukuruza specifičnih svojstava i namene. u: Proceedings of Simpozijum sa međunarodnim učešćem 'Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza -50 godina Instituta za kukuruz 'Zemun Polje', Belgrade, September 28-29, pp.229-237, in Serbian
Pejić, Đ. (1994) Silažni kukuruz -tehnologija proizvodnje i siliranja. Belgrade: Maize Research Institute 'Zemun Polje', in Serbian
Petrović, R., Filipović, M., Vidaković, M. (1992) Identifikacija izvora koji sadrže poželjne alele za poboljšanje roditeljskih komponenata elitnih hibrida kukuruza (Zea Mays L.). Genetika, 24(2): 115-126, online, http://www.dgsgenetika.org.rs/abstrakti/vol24_1992_no2_sr.htm#Rad7 (in Serbian) [Accessed: 15 November 2020]
Radenović, Č. (1991) Programirana ishrana dece sa kukuruzom doprinosi regulisanju metabolizma njihovog efikasnog rastenja i razvića. Belgrade: Society of Biophysicists of Serbia, in Serbian
Radenović, Č. (1994) Review, a study of delayed fluorescence in plant models: photosynthetic, transportation and membrane processes. Journal of the Serbian Chemical Society, 59(9): 595-617
Radenović, Č. (2002) Programirana ishrana domaćih životinja (goveda i ovce) silažom od kukuruza -doprinos regulisanju metabolizma njihovog prirasta i kvalitetu mesa i mleka. Belgrade: Society of Biophysicists of Serbia, in Serbian
Radenović, Č., Babić, M., Delić, N., Šatarić, I., Kojić, L. (2002) Novyj fotosintetichesko-bioljuminescentnyj metod v selekcii kukuruzy. Kukuruza i sorgo, 4: 21-24, in Russian
Radenović, Č., Babić, M., Hojka, Z., Stanković, G., Trifunović, B.V., Ristanović, D., Delić, N., Selaković, D. (2004) Properties of maize inbred lines with erect leaves as efficient photomodels in breeding. Doklady Rossijskoj akademii sel'skohozâjstvennyh nauk, 2: 7-9 [online]. Available at: https://www.elibrary.ru/item.asp?id=18281407 (in Russian) [Accessed: 15 November 2020]
Radenović, Č., Filipović, M., Anđeković, V., Babić, M., Radojčić, A. (2009) Significant breeding properties of inbred maize lines as the basis for creating new, higher yielding hybrids. Russian Agricultural Sciences, 35(6): 374-377
Radenović, Č., Filipović, M., Babić, M. (2013) Međuzavisnost procesa zakasnele fluorescencije hlorofila, fotosinteze i oplemenjivanja kukuruza. Novi Sad: Matica srpska, in Serbian
Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M.M., Selaković, D. (1998) Ressonance raman spectra of carotenodes in the maize kernel: A contribution to the evaluation of the kernels resistence to the temperature and the chemical composition of soil. Zbornik Matice srpske za prirodne nauke, 95: 41-50
Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M.M., Selaković, D., Trifunović, B.V. (1995) Rezonantni ramanski spektri semena kukuruza i njihova primena u proučavanju životnih funkcija. u: Proceedings of Simpozijum sa međunarodnim učešćem 'Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza -50 godina Instituta za kukuruz 'Zemun Polje', Belgrade, September 28-29, pp. 291-296, in Serbian
Radenović, Č., Konstantinov, K., Delić, N., Stanković, G. (2007) Photosynthetic and bioluminiscence properties of maize inbred lines with upright leaves. Maydica, 52(3): 347-356
Radenović, Č., Ristanović, D., Trifunović, V. (1978) The theoretical and the development programme on the increase of the plant number per area unit for the development of erect leaf maize lines and for their more effective application in breeding. Belgrade: Maize Research Institute 'Zemun Polje'
Radenović, Č., Somborac, M. (2000) Kukuruz na pragu trećeg milenijumasećanja, kazivanja i predviđanja. Belgrade: Maize Research Institute 'Zemun Polje', in Serbian
Radenović, Č., Grodzinskij, D.M., Filipović, M., Radosavljević, M., Videnović, Ž., Denić, M., Čamdžija, Z. (2010) The prestigious maize inbred lines and hybrids with erect top leaves are characterised by a property of an efficient photosynthetic model and a satisfactory base for the further progress in breeding and selection. Plant Physiology and Genetics, 42(3): 187-201
Radenović, Č., Jeremić, M., Maximov, G.V., Filipovović, M., Trifunović, B.V., Mišović, M.M. (1994) Mogućnost korišćenja ramanske spektroskopije u proučavanju otpornosti inbred linija kukuruza prema uslovima stresa. Savremena poljoprivreda, 42(1-2): 5-19, (in Serbian)
Radenović, Č.N. (2013) Deset godina proizvodnje hibrida kukuruza za zrno i silažu u agroekološkim uslovima - Puste Reke, Toplice i Dubočice. Programirana kampanja za ishranu ljudi sa proizvodima od kukuruza i domaćih životinja sa kukuruznom silažom. Belgrade: Society of Biophysicists of Serbia, in Serbian
Radenović, Č.N., Šatarić, I., Husić, I., Mišović, M.M., Filipović, M., Kojić, L. (2000) A study of functioning of thylakoid membranes in inbred lines of maize (Zea mays L.). Genetika, vol. 32, br. 3, str. 377-386
Radenović, Č.N., Filipović, M., Babić, M., Stanković, G., Radojčić, A., Sečanski, M., Pavlov, J., Radojčić, B.D., Selaković, D. (2008) Actual prestigious properties of maize inbred lines: A good initial basis for the efficient development of new and yielding maize hybrids. Genetika, vol. 40, br. 2, str. 121-133
Radosavljević, M., Bekrić, V., Božović, I., Jakovljević, J. (2000) Physical and chemical properties of various corn genotypes as a criterion of technological quality. Genetika, vol. 32, br. 3, str. 319-329
Sprague, G.F. (1984) Organization of breeding programs. u: 20th Ann. Illinois Corn Breeding School, USA, 20, p.20
Strati, I.F., Sinanoglou, V.J., Kora, L., Miniadis-Meimaroglou, S., Oreopoulou, V. (2012) Carotenoids from foods of plant, animal and marine origin: An efficient HPLC-DAD separation method. Foods, 1(1): 52-65
Trifunović, V. (1986) Četrdeset godina moderne selekcije kukuruza u Jugoslaviji. u: Proceedings of Genetika i oplemenjivanje kukuruza -dostignuća i nove mogućnosti, Belgrade, December 11-12, pp.5-46, in Serbian
Tyutyaev, E.V., Shutova, V.V., Maksimov, G.V., Radenovic, C.N., Grodzinskij, D.M. (2015) State of photosynthetical pigments in leaves of inbred lines and hybrids of maize. Fiziologija rastenij i genetika / Fiziologiâ rastenij i genetika, 47(2): 147-159, online, Available at: https://core.ac.uk/download/pdf/232903699.pdf (in Russian) [Accessed: 15 November 2020]
van Soest, P.J. (1963) Use of detergents in the analysis of fibrous feeds: II: A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, 46: 829-835, [online]. Available at: https://catalogo.latu.org.uy/opac_css/doc_num.php?explnum_id=1479 [Accessed: 15 November 2020]
Videnović, Ž., Simić, M., Srdić, J., Dumanović, Z. (2011) Long term effects of different soil tillage systems on maize (Zea mays L.) yields. Plant, Soil and Environment, 57(4): 186-192
White, P.J., Johnson, L.A. (2003) Corn: Chemistri aned technology. Eagan, Minnesota, USA: American Association of Cereal Chemists, pp.71-101, ISBN-13: 978-1891127335, ISBN-10: 1891127330
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/vojtehg69-29512
primljen: 21.11.2020.
revidiran: 25.12.2020.
prihvaćen: 27.12.2020.
objavljen u SCIndeksu: 26.01.2021.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka