|
References
|
|
Ashassi-Sorkhabi, H., Moradi-Haghighi, M., Zarrini, G. (2012) The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel. Materials Science and Engineering: C, 32(2): 303-309
|
|
Beech, I.B. (2004) Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. International Biodeterioration & Biodegradation, 53(3): 177-183
|
1
|
Beech, I.B., Sunner, J. (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Current opinion in biotechnology / Curr. Opin. Biotechnol., 15(3): 181-6
|
|
Beech, I.B., Campbell, S.A. (2008) Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment. Electrochimica Acta, 54(1): 14-21
|
|
Cheng, S., Tian, J., Chen, S., Lei, Y., Chang, X., Liu, T., Yin, Y. (2009) Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior. Materials Science and Engineering: C, 29(3): 751-755
|
|
Chongdar, S., Gunasekaran, G., Kumar, P. (2005) Corrosion inhibition of mild steel by aerobic biofilm. Electrochimica Acta, 50(24): 4655-4665
|
|
Cote, C., Rosas, O., Basseguy, R. (2015) Geobacter sulfurreducens: An iron reducing bacterium that can protect carbon steel against corrosion?. Corrosion Science, 94: 104-113
|
|
Cournet, A., Bergé, M., Roques, C., Bergel, A., Délia, M. (2010) Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa. Electrochimica Acta, 55(17): 4902-4908
|
|
Czaczyk, K., Myszk, K. (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16(6); 799-806
|
|
Dagbert, C., Meylheuc, T., Bellon-Fontaine, M. (2006) Corrosion behaviour of AISI 304 stainless steel in presence of a biosurfactant produced by Pseudomonas fluorescens. Electrochimica Acta, 51(24): 5221-5227
|
|
Dagbert, C., Meylheuc, T., Bellon-Fontaine, M. (2008) Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens. Electrochimica Acta, 54(1): 35-40
|
|
Duan, J., Wu, S., Zhang, X., Huang, G., Du, M., Hou, B. (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochimica Acta, 54(1): 22-28
|
|
Dubiel, M., Hsu, C. H., Chien, C. C., Mansfeld, F., Newman, D. K. (2002) Microbial Iron Respiration Can Protect Steel from Corrosion. Applied and Environmental Microbiology, 68(3): 1440-1445
|
|
Enning, D., Venzlaff, H., Garrelfs, J., Dinh, H.T., Meyer, V., Mayrhofer, K., Hassel, A.W., Stratmann, M., Widdel, F. (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental microbiology / Environ. Microbiol., 14(7): 1772-87
|
|
Finkenstadt, V.L., Côté, G.L., Willett, J.L. (2011) Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides. Biotechnology letters / Biotechnol. Lett., 33(6): 1093-100
|
|
Ghafari, M.D., Bahrami, A., Rasooli, I., Arabian, D., Ghafari, F. (2013) Bacterial exopolymeric inhibition of carbon steel corrosion. International Biodeterioration & Biodegradation, 80: 29-33
|
|
Ha, J., Gélabert, A., Spormann, A.M., Brown, G.E. (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochimica et Cosmochimica Acta, 74(1): 1-15
|
|
Hori, K., Matsumoto, S. (2010) Bacterial adhesion: From mechanism to control. Biochemical Engineering Journal, 48(3): 424-434
|
|
Ignatova-Ivanova,, Ivanov, T., Exopolysaccharides, R. (2014) from Lactic acid bacetria as corrosion inhibitors. Journal of Life Sciences, 940-945; 8
|
|
Ismail, K.M., Gehrig, T., Jayaraman, A., Wood, T. K., Trandem, K., Arps, P. J., Earthman, J. C. (2002) Corrosion Control of Mild Steel by Aerobic Bacteria under Continuous Flow Conditions. Corrosion, 58(5): 417-423
|
|
Javed, M.A., Stoddart, P.R., Palombo, E.A., McArthur, S.L., Wade, S.A. (2014) Inhibition or acceleration: Bacterial test media can determine the course of microbiologically influenced corrosion. Corrosion Science, 86: 149-158
|
|
Jayaraman, A., Earthman, J. C., Wood, T. K. (1997) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Applied Microbiology and Biotechnology, 47(1): 62-68
|
|
Jayaraman, A., Hallock, P. J., Carson, R. M., Lee, C.-C., Mansfeld, F. B., Wood, T. K. (1999) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Applied Microbiology and Biotechnology, 52(2): 267-275
|
|
Jayaraman, A., Cheng, E. T., Earthman, J. C., Wood, T. K. (1997) Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Applied Microbiology and Biotechnology, 48(1): 11-17
|
|
Jayaraman, A., Sun, A.K., Wood, T.K. (1998) Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. Journal of applied microbiology / J. Appl. Microbiol., 84(4): 485-92
|
|
Jayaraman, A., Ornek, D., Duarte, D. A., Lee, C. -C., Mansfeld, F. B., Wood, T. K. (1999) Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Applied Microbiology and Biotechnology, 52(6): 787-790
|
|
Jayaraman, A., Mansfeld, F.B., Wood, T.K. (1999) Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. Journal of Industrial Microbiology and Biotechnology, 22(3): 167-175
|
|
Jin, J., Wu, G., Zhang, Z., Guan, Y. (2014) Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater. Bioresource Technology, 165: 162-165
|
|
Juzeliūnas, E., Ramanauskas, R., Lugauskas, A., Leinartas, K., Samulevičienė, M., Sudavičius, A. (2006) Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection. Electrochimica Acta, 51(27): 6085-6090
|
|
Kamal, C., Sethuraman, M.G. (2012) Spirulina platensis – A novel green inhibitor for acid corrosion of mild steel. Arabian Journal of Chemistry, 5(2): 155-161
|
|
Kip, N., van Veen, J.A. (2014) The dual role of microbes in corrosion. ISME Journal, 9(3): 542-551
|
|
Korenblum, E., Weid, I. der, Santos, A.L.S., Rosado, A.S., Sebastian, G.V., Coutinho, C.M.L.M., Magalhaes, F.C.M., Paiva, M.M., Seldin, L. (2005) Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. Journal of Applied Microbiology, 98(3): 667-675
|
|
Lee, A.K., Buehler, M.G., Newman, D.K. (2006) Influence of a dual-species biofilm on the corrosion of mild steel. Corrosion Science, 48(1): 165-178
|
|
Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016) Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports, 6: 20190
|
|
LI, S., Zhang, Y., Liu, J., YU, M. (2008) Corrosion Behavior of Steel A3 Influenced by Thiobacillus Ferrooxidans. Acta Physico-Chimica Sinica, 24(9): 1553-1557
|
|
Lin, J., Ballim, R. (2012) Biocorrosion control: Current strategies and promising alternatives. African Journal of Biotechnology, 11(91); 15736-15747
|
|
Liu, H., Fang, H.H. P. (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80(7): 806-811
|
|
Mansfeld, F., Hsu, H., Örnek, D., Wood, T. K., Syrett, B. C. (2002) Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media. Journal of The Electrochemical Society, 149(4): B130
|
|
Mert, B.D., Mert, M., Kardaş, G., Yazıcı, B. (2011) The role of Spirulina platensis on corrosion behavior of carbon steel. Materials Chemistry and Physics, 130(1-2): 697-701
|
2
|
Milić, S.M., Antonijević, M.M. (2009) Some aspects of copper corrosion in presence of benzotriazole and chloride ions. Corrosion Science, 51(1): 28-34
|
|
Miranda, E., Bethencourt, M., Botana, F.J., Cano, M.J., Sánchez-Amaya, J.M., Corzo, A., de Lomas, J. G., Fardeau, M.L., Ollivier, B. (2006) Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corrosion Science, 48(9): 2417-2431
|
|
Moradi, M., Xiao, T., Song, Z. (2015) Investigation of corrosion inhibitory process of marine Vibrio neocaledonicus sp. bacterium for carbon steel. Corrosion Science, 100: 186-193
|
|
More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D., Surampalli, R.Y. (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management, 144: 1-25
|
1
|
Neyens, E. (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 106(2-3): 83-92
|
|
Örnek, D., Jayaraman, A., Syr, B. (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Applied Microbiology and Biotechnology, 58(5): 651-657
|
|
Petrović-Mihajlović, M., Antonijević, M. (2015) Copper corrosion inhibitors. Period 2008-2014. International Journal of Electrochemical Science, 10(2); 1027-1053
|
|
Ponmariappan, S., Maruthamuthu, S., Palaniswamy, N., Palaniappan, R. (2004) Corrosion Control by Bacterial Biofilms- An Overview. Corrosion Reviews, 22(4)
|
|
Priester, J. H., Olson, S. G., Webb, S. M., Neu, M. P., Hersman, L. E., Holden, P. A. (2006) Enhanced Exopolymer Production and Chromium Stabilization in Pseudomonas putida Unsaturated Biofilms. Applied and Environmental Microbiology, 72(3): 1988-1996
|
|
Qu, Q., He, Y., Wang, L., Xu, H., Li, L., Chen, Y., Ding, Z. (2015) Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2. Corrosion Science, 91: 321-329
|
|
San, N.O., Nazır, H., Dönmez, G. (2012) Evaluation of microbiologically influenced corrosion inhibition on Ni–Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corrosion Science, 65: 113-118
|
|
San, N.O., Nazır, H., Dönmez, G. (2014) Microbially influenced corrosion and inhibition of nickel–zinc and nickel–copper coatings by Pseudomonas aeruginosa. Corrosion Science, 79: 177-183
|
|
San, N.O., Nazır, H., Dönmez, G. (2011) Microbial corrosion of Ni–Cu alloys by Aeromonas eucrenophila bacterium. Corrosion Science, 53(6): 2216-2221
|
|
San, N.O., Nazır, H., Dönmez, G. (2012) Microbiologically influenced corrosion of NiZn alloy coatings by Delftia acidovorans bacterium. Corrosion Science, 64: 198-203
|
|
Stadler, R., Wei, L., Fürbeth, W., Grooters, M., Kuklinski, A. (2010) Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS). Materials and Corrosion, 61(12): 1008-1016
|
|
Stadler, R., Fuerbeth, W., Harneit, K., Grooters, M., Woellbrink, M., Sand, W. (2008) First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates. Electrochimica Acta, 54(1): 91-99
|
|
Tao, X., Moradi, M., Zhenlun, S., Lijing, Y., Tao, Y., Lifeng, H. (2016) Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel in Sulphuric Acid Solution. Journal of Chinese Society for Corrosion and Protection, 36(2); 150-156
|
|
van Leeuwen, S.S., Kralj, S., van Geel-Schutten, I.H., Gerwig, G.J., Dijkhuizen, L., Kamerling, J.P. (2008) Structural analysis of the alpha-D-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydrate research / Carbohydr. Res., 343(7): 1237-50
|
|
Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K.J.J., Hassel, A.W., Widdel, F., Stratmann, M. (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science, 66: 88-96
|
|
Videla, H.A., Herrera, L.K. (2009) Understanding microbial inhibition of corrosion. A comprehensive overview. International Biodeterioration & Biodegradation, 63(7): 896-900
|
|
Wadood, H.Z., Rajasekar, A., Ting, Y., Sabari, A.N. (2015) Role of Bacillus subtilis and Pseudomonas aeruginosa on Corrosion Behaviour of Stainless Steel. Arabian Journal for Science and Engineering, 40(7): 1825-1836
|
|
Yuan, S.J., Choong, A.M.F., Pehkonen, S.O. (2007) The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu–Ni alloy. Corrosion Science, 49(12): 4352-4385
|
|
Zarasvand, K.A., Rai, V. R. (2014) Microorganisms: Induction and inhibition of corrosion in metals. International Biodeterioration & Biodegradation, 87: 66-74
|
|
Zuo, R. (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology, 76(6): 1245-1253
|
|
Zuo, R., Wood, T.K. (2004) Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Applied Microbiology and Biotechnology, 65(6): 747-753
|
|
Zuo, R., Kus, E., Mansfeld, F., Wood, T.K. (2005) The importance of live biofilms in corrosion protection. Corrosion Science, 47(2): 279-287
|
|
|
|