Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 4 od 36  
Back povratak na rezultate
2019, vol. 8, br. 2, str. 82-91
TiO2 modifikovana karbonizovanim materijalima - fotokataliza/adsorpcija organskih polutanata u vodi - kratak pregledni rad
Univerzitet u Nišu, Prirodno-matematički fakultet

e-adresazarubica2000@yahoo.com
Projekat:
Razvoj i karakterizacija novog biosorbenta za prečišćavanje prirodnih i otpadnih voda (MPNTR - 34008)

Ključne reči: aktivni ugalj; adsorpcija; karbonizovani materijali; kompozitni materijali; TiO 2; fotokataliza
Sažetak
Kompoziti TiO2 /karbonizovani materijal obezbeđuju sinergistički efekat adsorpcije i fotokatalize. Aktivni ugalj (AC) ili karbonizovani materijal može biti pripremljen iz različitih sirovih materijala kao što je poljoprivredni otpad. Najčešće korišćen postupak za pripremu aktivnog uglja je hemijska aktivacija. Hemijskom aktivacijom se dobija aktivni ugalj koji poseduje veliku specifičnu površinu i poroznu strukturu, koja doprinosi boljoj adsorpciji organskih polutanata. Kompozitni TiO2 /AC materijali se mogu sintetisati sol-gel, hidrotermalnom i MOCVD (metalo-organska hemijska depozicija parom) tehnikom. Najčešće primenjivane tehnike za karakterizaciju TiO2 /AC materijala su XRD, BET, DTG analiza i UV-Vis - DRS o kojima će biti diskutovano u ovom radu, na bazi literaturnih podataka. Kompozitni TiO2 / AC materijali su pokazali veliku efikasnost u uklanjanju organskih polutanata iz vodenih rastvora. Na adsorpcioni proces organskih polutanata na aktivnom uglju može uticati niz procesnih parametara o kojima će biti diskutovano u ovom radu.
Reference
Admahpour, A., Do, D. (1997) The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon, 35(12), 1723-1732
Araña, J., Doña-Rodriguez, J.M., Rendón, E.T., Garriga, I.C., González-Diaz, O., Herrera-Melián, J.A., Pérez-Peña, J., Colón, G., Navio, J.A. (2003) TiO2 activation by using activated carbon as a support, part I: Surface characterisation and decantability study. Applied Catalysis B: Environmental, 44(2), 161-172
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G., Almeida, V.C. (2011) NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117-125
Coelho, C., Oliveira, A.S., Pereira, M.F.R., Nunes, O.C. (2006) The influence of activated carbon surface properties on the adsorption of the herbicide molinate and the bio-regeneration of the adsorbent. Journal of Hazardous Materials, 138(2), 343-349
Collin, J.G., Yii, F. (2008) Textural and chemical characterisation of activated carbons prepared from rice husk (oryza sativa) using a two-stage activation process. Journal of Engineering Science and Technology, 3(3), 234-242
Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M. (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 85(4), 833-846
Fujishima, A., Rao, T.N., Tryk, D.A. (2000) Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21
Gonzalez, J.C., Gonzalez, M.T., Molina-Sabio, M., Rodriguez-Reinoso, F., Sepulveda-Escribano, A. (1995) Porosity of activated carbons prepared from different lignocellulosic materials. Carbon, 33(8), 1175-1188
Hu, Z., Vansant, E.F. (1995) Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell. Microporous Materials, 3(6), 603-612
Karagoz, S., Tay, T., Ucar, S., Erdem, M. (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology, 99(14), 6214-6222
Leary, R., Westwood, A. (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 49(3), 741-772
Li, Y., Zhang, S., Yu, Q., Yin, W. (2007) The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol-gel method. Applied Surface Science, 253(23), 9254-9258
Li, Y., Li, X., Li, J., Yin, J. (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40(6), 1119-1126
Lim, T., Yap, P.S., Srinivasan, M., Fane, A.G. (2011) Tio2/ac composites for synergistic adsorption-photocatalysis processes: Present challenges and further developments for water treatment and reclamation. Critical Reviews in Environmental Science and Technology, 41(13), 1173-1230
Liu, S.X., Chen, X.Y., Chen, X.Y. (2007) A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials, 143(1-2), 257-263
Marugán, J., Hufschmidt, D., López-Muñoz, M., Selzer, V., Bahnemann, D. (2006) Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts. Applied Catalysis B: Environmental, 62(3-4), 201-207
Matos, J., Laine, J., Herrmann, J.M. (1998) Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental, 18(3-4), 281-291
Otowa, T., Nojima, Y., Miyazaki, T. (1997) Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon, 35(9), 1315-1319
Puma, G.L., Bono, A., Krishnaiah, D., Collin, J.G. (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. Journal of Hazardous Materials, 157, 209-219
Rahman, I.A., Saad, B., Shaidan, S., Syarizal, E. (2005) Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process. Bioresource Technology, 96(14), 1578-1583
Rodríguez-Reinoso, F., Molina-Sabio, M., González, M.T. (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon, 33(1), 15-23
Shankar, M.V., Anandan, S., Venkatachalam, N., Arabindoo, B., Murugesan, V. (2006) Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2. Chemosphere, 63(6), 1014-1021
Sheintuch, M., Matatov-Meytal, Y.I. (1999) Comparison of catalytic processes with other regeneration methods of activated carbon. Catalysis Today, 53(1), 73-80
Singh, C.K., Sahu, J.N., Mahalik, K.K., Mohanty, C.R., Mohan, B., Meikap, B.C. (2008) Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. Journal of Hazardous Materials, 153(1-2), 221-228
Slimen, H., Houas, A., Nogier, J.P. (2011) Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 221(1), 13-21
Sudaryanto, Y., Hartono, S.B., Irawaty, W., Hindarso, H., Ismadji, S. (2006) High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology, 97(5), 734-739
Tryba, B., Morawski, A.W., Inagaki, M. (2003) A new route for preparation of TiO2-mounted activated carbon. Applied Catalysis B: Environmental, 46(1), 203-208
Tseng, R.L. (2006) Mesopore control of high surface area NaOH-activated carbon. Journal of Colloid and Interface Science, 303(2), 494-502
Wang, W., Silva, C.G., Faria, J.L. (2007) Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Applied Catalysis B: Environmental, 70(1-4), 470-478
Wang, X., Hu, Z., Chen, Y., Zhao, G., Liu, Y., Wen, Z. (2009) A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Applied Surface Science, 255(7), 3953-3958
Yazawa, T., Machida, F., Kubo, N., Jin, T. (2009) Photocatalytic activity of transparent porous glass supported TiO2. Ceramics International, 35(8), 3321-3325
Yu, Y., Yu, J.C., Yu, J., Kwok, Y.C., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K., Wong, P.K. (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 289(2), 186-196
Zhang, X., Zhou, M., Lei, L. (2005) Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Applied Catalysis A: General, 282(1-2), 285-293
Zhang, X., Zhou, M., Lei, L. (2005) Enhancing the concentration of TiO2 photocatalyst on the external surface of activated carbon by MOCVD. Materials Research Bulletin, 40(11), 1899-1904
Zhang, X., Zhou, M., Lei, L. (2006) TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 44(2), 325-333
Zhang, X., Lei, L. (2008) Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts. Journal of Hazardous Materials, 153(1-2), 827-833
Zhu, B., Zou, L. (2009) Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. Journal of Environmental Management, 90(11), 3217-3225
 

O članku

jezik rada: engleski
vrsta rada: pregledni članak
DOI: 10.5937/savteh1902082S
objavljen u SCIndeksu: 20.12.2019.

Povezani članci

Nema povezanih članaka