Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 6 od 51  
Back povratak na rezultate
2020, vol. 77, br. 7, str. 688-696
Ispitivanje kratkotrajne stabilnosti nanoemulzija za parenteralnu ishranu izrađenih u laboratorijskim uslovima
aVojnomedicinska akademija, Centar za kliničku farmakologiju, Beograd + Univerzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd
bUniverzitet u Beogradu, Farmaceutski fakultet, Institut za farmaceutsku tehnologiju i kozmetologiju

e-adresadusicamirkovic11@gmail.com
Ključne reči: ishrana, parenteralna, totalna; koloidi; emulzije; kontrola kvaliteta
Sažetak
Uvod/Cilj. Primena nanoemulzija (NE) za parenteralnu ishranu predstavlja izuzetno značajno dostignuće koje je obeležilo medicinu i farmaciju dvadesetog veka. Tokom godina, tehnologija izrade NE i smeša za totalnu parenteralnu ishranu (TPN) stalno se usavršavala. Ovaj rad predstavlja nastavak prethodnog istraživanja i odnosi se na problematiku nanoemulzija (NE) koncentracije 20%, izrađenih u laboratorijskim uslovima. Osnovni akcenat stavljen je na mogućnost detektovanja eventualnog prisustva većih kapi ili njihovih aglomerata koji bi mogli da izazovu fatalne efekte. Pored toga, izvršena je i procena kvaliteta smeše za TPN sa NE. Rezultati su upoređeni sa rezultatima dobijenim praćenjem smeše za TPN izrađene od fabrički proizvedene emulzije (Lipofundin MCT/LCT 20%®). Metode. Primenom metode laserske difrakcije, praćenjem u periodu od 30 dana, dobijeni su rezultati koji se odnose na širinu raspodele veličina kapi NE, izraženu kao volumenski prečnik. Fizičko-hemijske karakteristike smeša za TPN određivane su tokom 72 sata i obuhvatale su: merenje srednjeg prečnika kapi, volumenskog prečnika, distribucije veličina kapi (PDI) i z-potencijala, kao i pH-vrednosti. Rezultati. Dobijeni rezultati bili su u skladu sa literaturnim podacima o kvalitetu parenteralnih NE (vrednosti volumenskih prečnika kretale su se između 50 i 490 nm). Tokom 72 h praćenja, TPN su ostale stabilne (i smeša za TPN sa NE izrađenom u laboratoriji, kao i TPN sa fabrički izrađenom NE). Zaključak. Tokom čuvanja u ambijentalnim uslovima, ispitivane karakteristike NE nisu se značajno menjale. Ukoliko se poštuju principi izrade i redosled mešanja komponenti, dobija se smeša za TPN sa zadovoljavajućim fizičko-hemijskim kvalitetom i stabilnosti.
Reference
Austin, P., Stroud, M. (2007) Prescribing adult intravenous nutrition. London: Pharmaceutical Press
Ball, P.A. (2001) Methods of assessing stability of parenteral nutrition regimens. Current Opinion in Clinical Nutrition and Metabolic Care, 4(5): 345-349
Benita, S., Levy, M.Y. (1993) Submicron emulsions as colloidal drug carriers for intravenous administration: Comprehensive physicochemical characterization. Journal of Pharmaceutical Sciences, 82(11): 1069-1079
Driscoll, D.F. (2014) Commercial lipid emulsions and all-in-one mixtures for intravenous infusion: Composition and physicochemical properties. World Review of Nutrition and Dietetics, 112: 48-56
Hamishehkar, H., Emami, J., Najafabadi, A.R., Gilani, K., Minaiyan, M., Mahdavi, H., Nokhodchi, A. (2009) The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloids and Surfaces B: Biointerfaces, 74(1): 340-349
Han, F., Li, S., Yin, R., Liu, H., Xu, L. (2008) Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1-3): 210-216
Jumaa, M., Müller, B.W. (1998) The effect of oil components and homogenization conditions on the physicochemical properties and stability of parenteral fat emulsions. International Journal of Pharmaceutics, 163(1-2): 81-89
Klang, V., Matsko, N., Raupach, K., El-Hagin, N., Valenta, C. (2011) Development of sucrose stearate-based nanoemulsions and optimisation through g-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 79(1): 58-67
Kozić, Đ. (2012) Thermodynamics: Principles and applications. Belgrade: Faculty of Mechanical Engineering, Serbian
Lawrence, J. (2013) Disperse systems. u: Denton P; Rostron C. [ur.] Pharmaceutics: The science of medicine design, Oxford: Oxford University Press, p. 180-1
Mason, T.G., Wilking, J.N., Meleson, K., Chang, C.B., Graves, S.M. (2006) Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41): R635-R666
Mcclements, D.J. (2011) Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter, 7(6): 2297-2316
Mckinnon, B.T. (1996) FDA safety alert: Hazards of precipitation associated with parenteral nutrition. Nutrition in Clinical Practice, 11(2): 59-65
Mirković, D., Ibrić, S., Balanč, B., Knez, Ž., Bugarski, B. (2017) Evaluation of the impact of critical quality attributes and critical process parameters on quality and stability of parenteral nutrition nanoemulsions. Journal of Drug Delivery Science and Technology, 39: 341-347
Mirković, D., Ibrić, S., Antunović, M. (2013) Quality assessment of total parenteral nutrition admixtures by the use of fractional factorial design. Vojnosanitetski pregled, vol. 70, br. 4, str. 374-379
Mirtallo, J., Canada, T., Johnson, D., Kumpf, V., Petersen, C., Sacks, G., Seres, D., Guenter, P., Task force for the Revision of Safe Practices for Parenteral Nutrition (2004) Safe practices for parenteral nutrition. Journal of Parenteral and Enteral Nutrition (JPEN), 28(6 suppl): S39-S70
Müller, R.H., Schmidt, S., Buttle, I., Akkar, A., Schmitt, J., Brömer, S. (2004) SolEmuls®: Novel technology for the formulation of i.v. emulsions with poorly soluble drugs. International Journal of Pharmaceutics, 269(2): 293-302
Rozentur, E., Nassar, T., Benita, S. (2010) Materials for nanoemulsions and their influence on the biofate. u: Torchilin V; Amiji M.M. [ur.] Handbook of materials for nanomedicine, Singapore: Pan Stanford Publishing Pte. Ltd, p. 515-54
Rungseevijitprapa, W., Siepmann, F., Siepmann, J., Paeratakul, O. (2010) Disperse systems. u: Florence I.A; Siepmann J. [ur.] Modern pharmaceutics, New York: Taylor & Francis Group, p. 398
Sobotka, L., Allison, S., Fürst, P., Meier, R., Pertkiewicz, M., Soeters, P. (2004) Basics in clinical nutrition. Prague: House Galén
Tadros, T.F. (1983) Emulsion stability. u: Becher P. [ur.] Encyclopedia of emulsion technology, New York: Marcel Dekker, p. 129-285
Tadros, T., Izquierdo, P., Esquena, J., Solans, C. (2004) Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108-109: 303-318
Taylor, P. (1995) Ostwald ripening in emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 99(2-3): 175-185
The United States Pharmacopoeial Convention (2016) Globule size distribution in lipid injectable emulsions. u: United States pharmacopeia and national formulary, Rockville, MD, USP39-NF34
Trotta, M., Pattarino, F., Ignoni, T. (2002) Stability of drug-carrier emulsions containing phosphatidylcholine mixtures. European Journal of Pharmaceutics and Biopharmaceutics, 53(2): 203-208
Wabel, C. (1998) Influence of lecithin on structure and stability of parenteral fat emulsions. Nürnberg: Universität Erlangen, dissertation
Washington, C., Athersuch, A., Kynoch, D.J. (1990) The electrokinetic properties of phospholipid stabilized fat emulsions: IV: The effect of glucose and of pH. International Journal of Pharmaceutics, 64(2-3): 217-222
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/VSP180115140M
objavljen u SCIndeksu: 12.08.2020.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka