Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:9

Sadržaj

članak: 7 od 81  
Back povratak na rezultate
2019, vol. 60, br. 2, str. 43-48
Uticaj toplotnog stresa na produktivnost i nutritivni kvalitet krompira
Univerzitet u Beogradu, Institut za biološka istraživanja 'Siniša Stanković'

e-adresaivana.momcilovic@ibiss.bg.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Institut za biološka istraživanja 'Siniša Stanković') (MPNTR - 451-03-68/2020-14/200007)

Ključne reči: krompir; Solanum tuberosum; toplotni stres; hrana
Sažetak
Krompir, Solanum tuberosum L., je najvažnija povrtarska kultura gajena za potrebe ljudske ishrane u svetu i dominantna povrtarska vrsta u Srbiji. Generalno se smatra biljkom "hladnijih predela" i izuzetno je osetljiv na visoke temperature. Visoke temperature vazduha i zemljišta utiču na rastenje i razviće biljaka krompira tako što usporavaju pojavu i rast klica, smanjuju broj stolona, usporavaju i redukuju inicijaciju krtola, redukuju nalivanje krtola i ometaju period mirovanja. Za proces tuberizacije, tj. formiranje i rast krtola, optimalne prosečne dnevne temperature su u opsegu 15-20 °C, mada nešto više temperature od 20-25 °C mogu pospešiti rast nadzemnog dela biljke i neto fotosintezu. Pored smanjenja broja i mase krtola, toplotni stres utiče na ukupan i tržišni prinos krompira tako što izaziva i fiziološke poremećaje i deformitet krtola, kao i promenu njihovog nutritivnog kvaliteta i osobina važnih za preradu. U toku prethodne dekade, problem osetljivosti krompira na delovanje visokih temperatura dobio je na značaju usled globalnih klimatskih promena. Pojačan je napor u selekciji novih, toplotno-tolerantnih genotipova krompira, kao i genomska, proteomska i metabolomska istraživanja odgovora biljaka krompira na visoke temperature.
Reference
*** (2008) International year of potato 2008. Rome: Food and Agriculture Organization of the United Nations, [Internet]. [cited 2019 Dec 24]. Available from: http://www.fao.org/ potato-2008/en/aboutiyp/index.html
Beals, K. (2019) Potatoes, Nutrition and Health. American Journal of Potato Research, 96(2): 102-110
Camire, M.E., Kubow, S., Donnelly, D.J. (2009) Potatoes and Human Health. Critical Reviews in Food Science and Nutrition, 49(10): 823-840
Coria, N.A., Sarquís, J.I., Peñalosa, I., Urzúa, M. (1998) Heat-Induced Damage in Potato (Solanum tuberosum) Tubers: Membrane Stability, Tissue Viability, and Accumulation of Glycoalkaloids. Journal of Agricultural and Food Chemistry, 46(11): 4524-4528
Davies, H. (1998) Physiological mechanisms associated with the development of internal necrotic disorders of potato. American Journal of Potato Research, 75(1): 37-44
Dimenstein, L., Lisker, N., Kedar, N., Levy, D. (1997) Changes in the content of steroidal glycoalkaloids in potato tubers grown in the field and in the greenhouse under different conditions of light, temperature and daylength. Physiological and Molecular Plant Pathology, 50(6): 391-402
Fahem, M., Haverkort, A.J. (1988) Comparison of the growth of potato crops grown in autumn and spring in North Africa. Potato Research, 31(4): 557-568
Feng, P., Wang, Y., Mu, Y., Un, J., Kang, J., Wu, N., Lu, X. (2019) Effect of high temperature on potato starch content, amylase activity and yield. Southwest China Journal of Agricultural Sciences, 32(6): 1253-1261
Firman, D.M., O'brien, P.J., Allen, E.J. (1992) Predicting the emergence of potato sprouts. Journal of Agricultural Science, 118(1): 55-61
Fogelman, E., Oren-Shamir, M., Hirschberg, J., Mandolino, G., Parisi, B., Ovadia, R., Tanami, Z., Faigenboim, A., Ginzberg, I. (2019) Nutritional value of potato (Solanum tuberosum) in hot climates: Anthocyanins, carotenoids, and steroidal glycoalkaloids. Planta, 249(4): 1143-1155
Food and Agriculture Organization of the United Nations (FAOSTAT) (2017) Food and Agriculture Organization of the United Nations. [Internet]. [cited 2019 Dec 22]. Available from: http://www.fao.org/faostat/en/#data/QC
Ginzberg, I., Barel, G., Ophir, R., Tzin, E., Tanami, Z., Muddarangappa, T., de Jong, W., Fogelman, E. (2009) Transcriptomic profiling of heat-stress response in potato periderm. Journal of Experimental Botany, 60(15): 4411-4421
Hancock, R.D., Morris, W.L., Ducreux, L.J.M., Morris, J.A., Usman, M., Verrall, S.R., Fuller, J., Simpson, C.G., Zhang, R., Hedley, P.E., Taylor, M.A. (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell & Environment, 37(2): 439-450
Levy, D., Veilleux, R.E. (2007) Adaptation of potato to high temperatures and salinity: A review. American Journal of Potato Research, 84(6): 487-506
Momčilović, I., Pantelić, D., Zdravković-Korać, S., Oljača, J., Rudić, J., Fu, J. (2016) Heat-induced accumulation of protein synthesis elongation factor 1A implies an important role in heat tolerance in potato. Planta, 244(3): 671-679
Navarro, C., Cruz-Oró, E., Prat, S. (2015) Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation. Current Opinion in Plant Biology, 23: 45-53
Pantelić, D. (2019) Translation elongation factor 1A in potato (Solanum tuberosum L.): Characterisation of isoforms, expression, and role in plant response to heat-stress. Belgrade: University of Belgrade, Doctoral Dissertation, 1-142
Pantelić, D., Dragićević, I.Č., Rudić, J., Fu, J., Momčilović, I. (2018) Effects of high temperature on in vitro tuberization and accumulation of stress-responsive proteins in potato. Horticulture, Environment, and Biotechnology, 59(3): 315-324
Priestley, H. (2006) How to think like consumers. . . and win!. u: Haase NU, Haverkort AJ [ur.] Potato developments in a changing Europe, Wageningen: Wageningen Academic Publishers, 189-98
Rykaczewska, K. (2015) The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. American Journal of Potato Research, 92(3): 339-349
Struik, P.C. (2007) Responses of the potato plant to temperature. u: Vreugdenhil D. [ur.] Potato Biology and Biotechnology: Advances and Perspectives, Oxford-Amsterdam: Elsevier, 367-93
Struik, P.C., Geertsema, J., Custers, C.H.M.G. (1989) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant: Development of stolons. Potato Research, II, 32(2): 143-149
Tang, R., Niu, S., Zhang, G., Chen, G., Haroon, M., Yang, Q., Rajora, O.P., Li, X. (2018) Physiological and growth responses of potato cultivars to heat stress. Botany, 96(12): 897-912
Thompson, A.L., Love, S.L., Sowokinos, J.R., Thornton, M.K., Shock, C.C. (2008) Review of the Sugar End Disorder in Potato (Solanum tuberosum, L.). American Journal of Potato Research, 85(5): 375-386
Valkonen, J.P.T., Keskitalo, M., Vasara, T., Pietilä, L., Raman, K.V. (1996) Potato Glycoalkaloids: A Burden or a Blessing?. Critical Reviews in Plant Sciences, 15(1): 1-20
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R. (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3): 199-223
Wolf, S., Marani, A., Rudich, J. (1991) Effect of Temperature on Carbohydrate Metabolism in Potato Plants. Journal of Experimental Botany, 42(5): 619-625
Yencho, G., Mccord, P.H., Haynes, K.G., Sterrett, R.S.B. (2008) Internal Heat Necrosis of Potato: A Review. American Journal of Potato Research, 85(1): 69-76
Zhu, X., Richael, C., Chamberlain, P., Busse, J.S., Bussan, A.J., Jiang, J., Bethke, P.C. (2014) Vacuolar Invertase Gene Silencing in Potato (Solanum tuberosum L.) Improves Processing Quality by Decreasing the Frequency of Sugar-End Defects. PLoS One, 9(4): e93381-e93381
 

O članku

jezik rada: engleski
vrsta rada: pregledni članak
DOI: 10.5937/hraIsh1902043M
objavljen u SCIndeksu: 03.06.2020.