Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 7 od 326  
Back povratak na rezultate
2020, vol. 11, br. 1, str. 11-19
Celulozni nanokristali indukuju dozno-zavisni efekat na citotoksičnost i proliferaciju humanih mononuklearnih ćelija periferne krvi
aUniverzitet u Istočnom Sarajevu, Medicinski fakultet, Foča, Republika Srpska, BiH
bUniverzitet u Beogradu + Univerzitet u Beogradu, Institut za primenu nuklearne energije - INEP
cVojnomedicinska akademija, Institut za medicinska istraživanja, Beograd
dUniverzitet u Istočnom Sarajevu, Medicinski fakultet, Foča, Republika Srpska, BiH + Univerzitet u Beogradu, Institut za primenu nuklearne energije - INEP

e-adresavasiljevicmilos85@gmail.com
Ključne reči: celulozni nanokristali; mononuklearne ćelije periferne krvi; kultura; citotoksičnost; proliferacija
Sažetak
Uvod. Celulozni nanokristali (CNCs) su atraktivni prirodni materijali koji imaju brojne primjene u oblasti biomedicine. Zahvaljujući specifičnim biomehaničkim svojstvima, hemijskim karakteristikama njihove površine, niskoj cijeni i obnovljivosti izvora, pripadaju naprednim nanomaterijalima i predstavljaju odličnu zamjenu za tradicionalne celulozne materijale. Međutim, prije biomedicinske primjene neophodno je provjeriti citokompatibilnost i imunomodulacijska svojstva prirodnih (n)CNCs, koja nisu u potpunosti istražena. Zato je cilj ovog rada bio da se ispita dozno zavisni efekat nCNCs na citotoksičnost i proliferaciju humanih mononuklearnih ćelija periferne krvi (PBMNCs) in vitro. Metode. PBMNCs, dobijene od zdravih dobrovoljnih davaoca krvi, su kultivisane sa nCNCs. Vijabilnost ćelija je analizirana pomoću protočne citometrije, dok je proliferacija ispitivana na osnovu MTT testa, testa ugradnje [3H]-timidina i detekcijom produkcije interleukina-2 (IL-2). Rezultati. Rezultati citotoksičnosti pokazuju da nijedna od koncentracija nCNCs (50-400 mg/ml) nije uticala na nekrozu PBMNCs, dok je apoptozu indukovala najveća koncentracija nCNCs u poređenju sa kontrolom (p<0,05). Neočekivano, najveća koncentracija nCNCs je povećala metaboličku aktivnost fitohemalutininom (PHA)-stimulisanih ćelija u poređenju sa kontrolom (p<0,05). Suprotno ovim rezultatima, manje koncentracije nCNCs (50 mg/ml and 100 mg/ml) su stimulisale proliferaciju PBMNCs (p<0,05 i p<0,001). To je bilo praćeno povećanjem produkcije IL-2 (100 mg/ml) (p<0,001). Zaključak. Rezultati ukazuju da necitotoksične koncentracije nCNCs moduliraju proliferaciju PBMNCs, fenomen koji do sada nije objavljen u literaturi i zato može biti koristan za dalja istraživanja.
Reference
Aldinucci, A., Turco, A., Biagioli, T., Toma, F.M., Bani, D., Guasti, D., et al. (2013) Carbon nanotube scaffolds instruct human dendritic cells: Modulating immune responses by contacts at the nanoscale. Nano Letters, 13(12): 6098-105
Alexandrescu, L., Syverud, K., Gatti, A., Chinga-Carrasco, G. (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose, 20(4): 1765-75
Bachmann, M.F., Oxenius, A. (2007) Interleukin 2: From immunostimulation to immunoregulation and back again. EMBO reports, 8(12): 1142-8
Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., et al. (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27(9): 2141-9
Brown, E.E., Hu, D., Abu, L.N., Zhang, X. (2013) Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications. Biomacromolecules, 14(4): 1063-71
Catalán, J., Ilves, M., Järventaus, H., Hannukainen, K.S., Kontturi, E., Vanhala, E., et al. (2015) Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environmental and Molecular Mutagenesis, 56(2): 171-82
Clift, M.J., Foster, E.J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., et al. (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules, 12(10): 3666-73
Čolić, M., Džopalić, T., Tomić, S., Rajković, J., Rudolf, R., Vuković, G., et al. (2014) Immunomodulatory effects of carbon nanotubes functionalized with a Toll-like receptor 7 agonist on human dendritic cells. Carbon, 67: 273-87
Čolić, M., Mihajlović, D., Mathew, A., Naseri, N., Kokol, V. (2015) Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose, 22(1): 763-78
Dobrovolskaia, M.A., Mcneil, S.E. (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol, 2(8): 469
Dong, S., Hirani, A.A., Colacino, K.R., Lee, Y.W., Roman, M. (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life, 2(03): 1241006
Dong, S., Cho, H.J., Lee, Y.W., Roman, M. (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules, 15(5):1560-7
Endes, C., Schmid, O., Kinnear, C., Mueller, S., Camarero-Espinosa, S., Vanhecke, D., et al. (2014) An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Particle and Fibre Toxicology, 11(1): 40
Eyholzer, C., de Couraça, B.A., Duc, F., Bourban, P., Tingaut, P., Zimmermann, T., et al. (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules, 12(5): 1419-27
Gonzalez, J.S., Ludueña, L.N., Ponce, A., Alvarez, V.A. (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C Mater Biol Appl, 34: 54-61
Habibi, Y., Lucia, L.A., Rojas, O.J. (2010) Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6): 3479-500
Hagiwara, Y., Putra, A., Kakugo, A., Furukawa, H., Gong, J.P. (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose, 17(1): 93-101
Hua, K., Carlsson, D.O., Ålander, E., Lindström, T., Strømme, M., Mihranyan, A., et al. (2014) Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv, 4(6): 2892-903
Izeboud, E. (1992) Biocompatibility of cellulose and cellulose derivates. Germany: Papier
Janjic, M., Pappa, F., Karagkiozaki, V., Gitas, C., Ktenidis, K., Logothetidis, S. (2017) Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. International Journal of Nanomedicine, 12: 6343
Jeong, S.I., Lee, S.E., Yang, H., Jin, Y.-.H., Park, C.-.S., Park, Y.S. (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Molecular & Cellular Toxicology, 6(4): 370-7
Jorfi, M., Foster, E.J. (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci, 132: 41719
Kargarzadeh, H., Mariano, M., Gopakumar, D., Ahmad, I., Thomas, S., Dufresne, A., et al. (2018) Advances in cellulose nanomaterials. Cellulose, 25(4): 2151-89
Kim, G.-.D., Yang, H., Park, H.R., Park, C.-.S., Park, Y.S., Lee, S.E. (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip Journal, 7(3): 201-9
Lin, N., Dufresne, A. (2014) Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59: 302-25
Liu, K., Lin, X., Chen, L., Huang, L., Cao, S. (2014) Dual-functional chitosan-methylisothiazolinone/microfibrillated cellulose biocomposites for enhancing antibacterial and mechanical properties of agar films. Cellulose, 21(1): 519-28
Lopes, V.R., Sanchez-Martinez, C., Strømme, M., Ferraz, N. (2017) In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: Surface chemistry aspect. Particle and Fibre Toxicology, 14(1): 1
Mathew, A.P., Oksman, K., Pierron, D., Harmand, M.F. (2013) Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: Potential as artificial ligament/tendons. Macromolecular Bioscience, 13(3): 289-98
Mihajlovic, D., Vucevic, D., Chinou, I., Colic, M. (2014) Royal jelly fatty acids modulate proliferation and cytokine production by human peripheral blood mononuclear cells. European Food Research and Technology, 238(5): 881-7
Miyamoto, T., Takahashi, S., Ito, H., Inagaki, H., Noishiki, Y. (1989) Tissue biocompatibility of cellulose and its derivatives. Journal of Biomedical Materials Research, 23(1): 125-33
Mondal, S. (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 163: 301-16
Moreira, S., Silva, N.B., Almeida-Lima, J., Rocha, H.A.O., Medeiros, S.R.B., Alves, J.C., et al. (2009) BC nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicology Letters, 189(3): 235-41
O'flynn, K., Krensky, A.M., Beverley, P.C., Burakoff, S.J., Linch, D.C. (1985) Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor. Nature, 313(6004): 686
Pereira, M.M., Raposo, N., Brayner, R., Teixeira, E., Oliveira, V., Quintão, C.C.R., et al. (2013) Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology, 24(7): 075103
Qin, G., Panilaitis, B.J., Kaplan, Z.S.D.L. (2014) A cellulosic responsive 'living' membrane. Carbohydrate polymers, 100: 40-45
Sacui, I., Nieuwendaal, R.C., Burnett, D.J., Stranick, S.J., Jorfi, M., Weder, C., et al. (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces, 6: 6127-38
Shi, Z., Li, Y., Chen, X., Han, H., Yang, G. (2014) Double network bacterial cellulose hydrogel to build a biology-device interface. Nanoscale, 6(2): 970-7
Sinko, R., Qin, X., Keten, S. (2015) Interfacial mechanics of cellulose nanocrystals. MRS Bulletin, 40(4): 340-8
Tabuchi, M., Baba, Y. (2005) Design for DNA separation medium using bacterial cellulose fibrils. Anal Chem, 77(21): 7090-3
Tada, H., Shiho, O., Kuroshima, K.-.I., Koyama, M., Tsukamoto, K. (1986) An improved colorimetric assay for interleukin 2. Journal of Immunological Methods, 93(2): 157-65
Tashiro, K., Kobayashi, M. (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds. Polymer, 32(8):1516-26
Tomić, S., Ilić, N., Kokol, V., Gruden-Movsesijan, A., Mihajlović, D., Bekić, M., et al. (2018) Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. International Journal of Nanomedicine, 13: 6941-60
Tomić, S., Đokić, J., Vasilijić, S., Ogrinc, N., Rudolf, R., Pelicon, P., et al. (2014) Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE, 9(5): e96584
Tomić, S., Kokol, V., Mihajlović, D., Mirčić, A., Čolić, M. (2016) Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells. Scientific Reports, 6: 31618
Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., et al. (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18(3): 775-86
Wen, X., Zheng, Y., Wu, J., Wang, L.-.N., Yuan, Z., Peng, J., et al. (2015) Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. International Journal of Nanomedicine, 10: 4623
Yanamala, N., Farcas, M.T., Hatfield, M.K., Kisin, E.R., Kagan, V.E., Geraci, C.L., et al. (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Wustain Chem Eng, 2(7): 1691-8
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/BII2001011V
primljen: 11.01.2020.
prihvaćen: 29.05.2020.
objavljen u SCIndeksu: 03.04.2021.

Povezani članci

Nema povezanih članaka