Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:24
  • preuzimanja u poslednjih 30 dana:12

Sadržaj

članak: 4 od 50  
Back povratak na rezultate
2020, vol. 56, br. 1, str. 23-35
Dobijanje ZnO iz flotacijske jalovine koja sadrži olovo i cink hidrometalurškim postupcima - XRD, SEM i AFM analize
aIstanbul Technical University, Mineral Processing Engineering Department, Istanbul, Turkey
bIstanbul Technical University, Metallurgical and Material Engineering Department, Istanbul, Turkey

e-adresaarslanf@itu.edu.tr
Ključne reči: Pb-Zn rude; Luženje; Taloženje; Klasteri cink oksida; Struktura cink-oksida
Sažetak
Hidrometalurška metoda za dobijanje cink hidroksida i sintezu ZnO nanokristalne strukture predstavlja veoma interesantnu metodu za dobijanje oksida olova i cinka iz flotacijske jalovine koja sadrži olovo i cink. U Turskoj, rude koje pored olova i cinka imaju i visoki sadržaj gvožđa nisu pogodne za uobičajene metode koje se koriste za preradu mineralnih sirovina i potrebno je koristiti hidrometalurške metode. Stoga, kontrola gvožđa tokom postupaka koji uključuju cink je veoma važna. U ovom radu je ispitivana hidrometalurška metoda za dobijanje cinka iz Pb-Zn flotacijske jalovine tako što je ispitivan uticaj koncentracije H2SO4 i temperature prilikom luženja i prženja na rastvaranje cinka uzimajući u obzir promenu redoks-potencijala i pH vrednosti. Dobijeni uzorci gvožđa i cinka su pojedinačno analizirani metodama rentgenske difrakcije (XRD), pretražnog elektronskog mikroskopa (SEM) i mikroskopa atomskih sila (MAS) (engl. Atomic Force Microscope, AFM) da bi se uporedili uzorci pre i posle luženja, taloženja i prženja. Dobijeno je 83,1% Zn i 91,6% Cd postupkom luženja iz Pb-Zn flotacijske jalovine, gde su veličine čestica bile od 50 do 110 nm što se vidi na presecima slika dobijenih mikroskopijom atomskih sila, dok se olovo i gvožđe nisu rastvorili. Elementarni sumpor je počeo da se formira i stvara sloj oko čestica ili delimično nagomilanih čestica veličine 170 nm tokom postupka luženja u prisustvu sumporne kiseline. Međutim, utvrđeno je da je veličina većine čestica bila manja od 20 mikrona, a slike dobijene mikroskopom atomskih sila su pokazale da se veličina luženih i neluženih čestica razlikovala za više od 50%. Selektivno taloženje gvožđa i cink hidroksida je postignuto u velikom procentu, 90,1% gvožđa i 99% cinka. Nakon termičkog postupka, dobijeni su klasteri cinka čistoće 96,6% u obliku minerala ZnO i veličine skoro 13 nm. Dobijanje cinka se može smatrati uspešnim, a flotacijska jalovina se može posmatrati kao dobar kandidat za proizvodnju visokotehnoloških nanočestica ZnO sa nanokristalnom strukturom.
Reference
Arslan, F., Aykaç, Y., Perek, K.T., Bakan, S., Önal, G. (2004) Leaching of lead-zinc flotation tailings. u: Proceedings of Xth International mineral processing symposium: Challenges and opportunities in mineral processing, Çeşme, Turkey, 667-671
Arslan, F., Aykaç, Y., Perek, K.T., Bakan, S., Önal, G. (2006) Evaluation of lead-zinc flotation tailings. u: Kongoli, F.; Reddy, R.G. [ur.] Sohn international symposium on advanced processing of metals and materials: Thermo and physicochemical principles: Special materials, aqueous and electrochemical processing, San Diego, USA, 3: 387-395
Arslan, F., Bulut, G., Kangal, M., Perek, K., Gul, A., Gurmen, S. (2004) Studies on leaching of massive rich copper ore in acidic ferric sulfate solutions. Scandinavian Journal of Metallurgy, 33(1): 6
Benli, B. (2014) Effects of humic acid release from sepiolite on the interfacial and rheological properties of alkaline dispersions. Applied Clay Science, 102(12): 1-7
Bickmore, B.R., Hochella, M.F., Bosbach, D., Charlet, L. (1999) Methods for performing Atomic Force Microscopy imaging of clay minerals in aqueous solutions. Clays and Clay Minerals, 47(5): 573-581
Brayner, R., Dahoumane, S.A., Ye'pre,, Djediat, C., Meyer, M., Coute', A.A., Fie'vet, F. (2010) ZnO nanoparticles: Synthesis, characterization, and ecotoxicological studies. Langmuir, 26(9): 6522-6528
Buban, K.R., Collins, M.J., Masters, I.M. (1999) Iron control in zinc pressure leach processes. JOM, 51(12): 23-25
Caproni, G., Ciccu, R., Ghiani, M., Trudu, I. (1979) The processing of oxidized lead and zinc ores in the campo Pisano and San Giovanni plants (Sardinia). u: XIII International mineral processing Congress, processing of oxidized and mixed oxidesulphide lead-zinc ores, Warszawa, 71-91
Castellano, M., Matijevic, E. (1989) Uniform colloidal zinc compounds of various morphologies. Chemistry of Materials, 1(1): 78-82
Cobble, J.R., Jordan, C.E., Rice, D.A. (2003) RI 9472 US Bureau of Mines
Doutt, D.R., Brillson, L.J. (2011) Nanoscale AFM and KPFM mapping of localized charge and recombination centers on chemically active ZnO surfaces: Case study: ZnO surfaces. Park System Applications Note, 1-5
Hosseini, S.H., Forssberg, K.S.E. (2002) Flotation of oxidized lead & zinc minerals from Angooran deposit in Zanjan province, Iran. u: IX international mineral processing symposium, extended abstracts,18-20 September, Cappadocia, Turkey, 105-106
Hyk, W., Kitka, K., Rudnicki, D. (2019) Selective recovery of zinc from metallurgical waste materials from processing zinc and lead ores. Molecules, 24, 2275, pp: 1-10
Ismael, M., Carvalho, J. (2003) Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Minerals Engineering, 16(1): 31-39
Jandová, J., Dvorák, P., Jiričný, V., Mráz, R. (2003) Recycling of ZnO flue dust to produce zinc by hydrometallurgical routes. u: Young, C.; Alfantazi, A.; Anderson, C.; James, A.; Dreisinger, D.; Harris, B. [ur.] Electrometallurgy and environmental hydrometallurgy, Hoboken, NJ: John Wiley & Sons, Inc, 2: 1593-1603
Jitianu, M., Goia, D.V. (2007) Zinc oxide colloids with controlled size, shape, and structure. Journal of Colloid and Interface Science, 309(1): 78-85
John, M., Heuss-Aßbichler, S., Ullrich, A. (2016) Recovery of Zn from wastewater of zinc plating industry by precipitation of doped ZnO nanoparticles. International Journal of Environmental Science and Technology, 13(9): 2127-2134
Kanari, N., Mishra, D., Gaballah, I., Dupré, B. (2004) Thermal decomposition of zinc carbonate hydroxide. Thermochimica Acta, 410(1-2): 93-100
Katı, N. (2019) Investigation of optical and morphological properties of co doped ZnO nanomaterials. Turkish Journal of Science & Technology, 14(1): 41-48
Kim, Y., Lee, J. (2016) Leaching kinetics of zinc from metal oxide varistors (MOVs) with sulfuric acid. Metals, 6(8): 192
Kunicky, Z., Jandova, J., Dostal, J., Dvorak, P. (2008) Zinc recovery from wastes using spent acid from scrapped lead acid batteries. u: International symposium on lead and zinc processing, Republic of South Africa: The Southern African Institute of Mining and Metallurgy, 247-254
Lee, B.W., Koo, J.H., Lee, T.S., Kim, Y.H., Hwang, J.S. (2013) Synthesis of ZnO nanoparticles via simple wet-chemical routes. Advanced Materials Research, 699: 133-137
Marouf, S., Beniaiche, A., Guessas, H., Azizi, A. (2017) Morphological, structural and optical properties of ZnO thin films deposited by dip coating method. Materials Research, 20(1): 88-95
Moezzi, A., Cortie, M.B., McDonagh, A.M. (2013) Zinc hydroxide sulphate and its transformation to crystalline zinc oxide. Dalton Transactions, 42(40): 14432-14437
Moezzi, A., Cortie, M., Dowd, A., McDonagh, A. (2014) On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate. Journal of Nanoparticle Research, 16, Article Number: 2344
Onal, G., Bulut, G., Gül, A., Kangal, O., Perek, P.T., Arslan, F. (2005) Flotation of Aladag oxide lead-zinc ores. Miner. Eng, 18: 279-282
Önal, G., Abramov, A.A. (2002) Optimal conditions for oxide lead minerals flotation. u: IX international mineral processing symposium: Extended abstracts, 18-20 September, Cappadocia, Turkey, 107-108
Orhan, G. (2005) Leaching and cementation of heavy metals from electric arc furnace dusts. Hydrometallurgy, 78(3-4): 236-245
Perek, K.T., Arslan, F. (2003) Recovery of metallic values from Küre massive rich copper ores by pressure leaching. Istanbul Technical University Journal/d-Engineering, 2(3): 65-72
Perek, T., Benli, B., Arslan, F. (2011) Recovery of zinc from lead-zinc flotation tailings by leaching and precipitation. u: Xiv international Balkan mineral processing Congress, June 14-16, Tuzla, Bosnia and Herzegovina
Plaschke, M., Schäfer, T., Bundschuh, T., Manh, N.T., Knopp, R., Geckeis, H., Kim, J.I. (2001) Size characterization of bentonite colloids by different methods. Analytical Chemistry, 73(17): 4338-4347
Pourbaix, M. (1974) Atlas of electrochemical equilibria in aqueous solutions. Houston, Texas: NACE (National Association of Corrosion Engineers), Second English Edition
Principe, F.T., Demopoulos, G.P. (1999) The separation and concentration of iron from zinc process solutions. JOM, 51(12): 34-35
Rahman, M.M., Qadir, M.R., Neger, A.T., Kurny, A.S.W. (2013) Studies on the preparation of zinc oxide from galvanizing plant waste. American Journal of Materials Engineering and Technology, 1, 4, 59-64
Ristić, M., Musić, S., Ivanda, M., Popović, S. (2005) Sol-gel synthesis and characterization of nanocrystalline ZnO powders. Journal of Alloys and Compounds, 397(1-2): L1-L4
Ruiz, O., Clemente, C., Alonso, M., Alguacil, F.J. (2007) Recycling of an electric arc furnace flue dust to obtain high grade ZnO. Journal of Hazardous Materials, 141(1): 33-36
Shamhari, N.M., Wee, B.S., Chin, S.F., Kok, K.Y. (2018) Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chimica Slovenica, 65(3): 578-585
Singh, S.C., Singh, D.P., Singh, J., Dubey, P.K., Tiwari, R.S., Srivastava, O.N. (2010) Metal oxide nanostructures: Synthesis, characterizations and applications. u: Umar, A. [ur.] Encyclopedia of semiconductor nanotechnology, American Scientific Publishers
Solookinejad, Gh., Rozatian, A.S.H., Habibi, M.H. (2016) Zinc Oxide Thin Films Characterization, AFM, XRD and X-ray Reflectivity. Experimental Techniques, 40: 1297-1306
Tsakiridis, P.E., Oustadakis, P., Katsiapi, A., Agatzini-Leonardou, S. (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning. Journal of Hazardous Materials, 179(1-3): 8-14
Vaseem, M., Umar, A., Hahn, Y.B. (2010) ZnO nanoparticles: Growth, properties, and applications. u: Umar, A.; Hahn, Y.B. [ur.] Metal oxide nanostructures and their applications, American Scientific Publishers, 5: 1-36
Yoshida, T. (2003) Leaching of zinc oxide in acidic solution. Materials transactions, 44(12): 2489-2493
Zainuddin, N.A., Raja, M.T.A., Imam, M.H., Puasa, S.W., Mohd, Y.S.R. (2019) Removal of nickel, zinc and copper from plating process industrial raw effluent via hydroxide precipitation versus sulphide precipitation: Joint conference on green engineering technology & applied computing. IOP Conf. Series: Materials Science and Engineering, 551: 012122, IOP Publishing
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/JMMA2001023P
primljen: 14.01.2020.
prihvaćen: 23.03.2020.
objavljen u SCIndeksu: 20.12.2020.
Creative Commons License 4.0