Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 6 od 50  
Back povratak na rezultate
2020, vol. 56, br. 1, str. 127-133
Selektivno rastvaranje vanadijuma (V) iz istrošenih naftnih katalizatora u prisustvu oksalne kiseline
Mokpo National University, Institute of Rare Metal, Department of Advanced Materials Science & Engineering, Chonnam, Republic of Korea

e-adresamslee@mokpo.ac.kr
Projekat:
Thisstudy wassupported by a grant from the Korean Research Foundation (2018R1D1A1B07044951)

Ključne reči: istrošeni naftni katalizator; vanadijum; oksalna kiselina; luženje
Sažetak
Istrošeni naftni katalizator sadrži značajnu količinu vanadijuma i njegovo izdvajanje je od velikog značaja. Oksalna kiselina ima dobru metalnu selektivnost zbog svojih složenih osobina. Eksperimenti luženja u prisustvu oksalne kiseline su urađeni da bi se ispitalo ponašanje vanadijuma iz istrošenih naftnih katalizatora prilikom rastvaranja tako što su menjani uslovi tokom postupka luženja, kao što su temperatura, koncentracija, gustina pulpe, brzina mešanja i vreme. Vanadijum i molbiden su se selektivno rastvorili u prisustvu oksalne kiseline, dok je procenat ostalih metala dobijenih postupkom luženja bio nizak. Međutim, procenat vanadijuma dobijenog luženjem u prisustvu oksalne kiseline je bio niži od 45% pod većinom uslova prilikom luženja. Ovi rezultati pružaju osnovni uvid u rastvaranje dragocenih metala iz istrošenih katalizatora u prisustvu organske kiseline.
Reference
Beltrán, A., Caturla, F., Cervilla, A., Beltrán, J. (1981) Mo(VI) oxalate complexes. Journal of Inorganic and Nuclear Chemistry, 43(12): 3277-3282
Bruyère, V.I.E., Morando, P.J., Blesa, M.A. (1999) The dissolution of vanadium pentoxide in aqueous solutions of oxalic and mineral acids. Journal of Colloid and Interface Science, 209(1): 207-214
Chauhan, G., Pant, K.K., Nigam, K.D.P. (2013) Metal recovery from hydroprocessing spent catalyst: A green chemical engineering approach. Industrial & Engineering Chemistry Research, 52(47): 16724-16736
Delia, R.A., Flores-Fajardo, O., Selene, A.G.F., Noé, L.C.N., Javier, C.G.M. (2012) Chemical treatment to recover molybdenum and vanadium from spent heavy gasoil hydrodesulfurization catalyst. Advances in Chemical Engineering and Science, 02(03): 408-412
Ehde, P.M., Pettersson, L., Glaser, J., Nielsen, C.M., Dunford, H.B., Frøystein, N.Å., Francis, G.W., Karlsson, B. (1991) Multicomponent polyanions: 45 a multinuclear nmr study of vanadate(v)-oxalate complexes in aqueous solution. Acta Chemica Scandinavica, 45: 998-1005
El-Nadi, Y.A., Awwad, N.S., Nayl, A.A. (2009) A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst. International Journal of Mineral Processing, 92(3-4): 115-120
Gao, H., Jiang, T., Xu, Y., Wen, J., Xue, X. (2020) Leaching kinetics of vanadium and chromium during sulfuric acid leaching with microwave and conventional calcification-roasted high chromium vanadium slag. Mineral Processing and Extractive Metallurgy Review, 41(1): 22-31
Haas, F.C., Hesse, W.K. (1981) U.S. Patent No. 4,243,639
Ilhan, S., Kalpakli, A.O., Kahruman, C., Yusufoglu, I. (2013) The use of oxalic acid as a chelating agent in the dissolution reaction of calcium molybdate. Metallurgical and Materials Transactions B, 44(3): 495-505
Kakumoto, T., Saito, K.O., Imamura, A. (1987) Unimolecular decomposition of oxalic acid. Journal of Physical Chemistry, 91(9): 2366-2371
Lee, F.M., Knudsen, R.D., Kidd, D.R. (1992) Reforming catalyst made from the metals recovered from spent atmospheric resid desulfurization catalyst. Industrial & Engineering Chemistry Research, 31(2): 487-490
Li, M., Wei, C., Fan, G., Li, C., Deng, Z., Li, X. (2009) Extraction of vanadium from black shale using pressure acid leaching. Hydrometallurgy, 98(3-4): 308-313
Li, Q., Liu, Z., Liu, Q. (2014) Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid. Industrial & Engineering Chemistry Research, 53(8): 2956-2962
Lide, D.R. (2007) CRC handbook of chemistry and physics. Boca Raton: Taylor and Francis, 842-842
Liu, S. Y., Shen, S. B., Chou, K. C. (2018) An effective process for simultaneous extraction of valuable metals (V, Cr, Ti, Fe, Mn) from vanadium slag using acidic sodium chlorate solution under water bath conditions. Journal of Mining and Metallurgy B: Metallurgy, vol. 54, br. 2, str. 153-159
Lozano, L.J., Juan, D. (2001) Leaching of vanadium from spent sulphuric acid catalysts. Minerals Engineering, 14(5): 543-546
Marafi, M., Stanislaus, A. (2008) Spent catalyst waste management: A review. Resources, Conservation and Recycling, 52(6): 859-873
Marafi, M., Stanislaus, A. (2003) Options and processes for spent catalyst handling and utilization. Journal of Hazardous Materials, 101(2): 123-132
Marafi, M., Stanislaus, A. (2011) Waste catalyst utilization: Extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids. Industrial & Engineering Chemistry Research, 50(16): 9495-9501
Martell, A.E., Smith, R.M. (1977) Critical stability constants. New York: Springer Science, 92-92
Martell, A.E., Smith, R.M. (1982) Critical stability constants. New York: Springer Science, 307-307
Mazurek, K. (2013) Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy, 134-135: 26-31
Mishra, D., Chaudhury, G., Kim, D.J., Ahn, J.G. (2010) Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique. Hydrometallurgy, 101(1-2): 35-40
Mohanty, J., Rath, P.C., Bhattacharya, I.N., Paramguru, R.K. (2011) The recovery of vanadium from spent catalyst: A case study. Mineral Processing and Extractive Metallurgy, 120(1): 56-60
Moskalyk, R.R., Alfantazi, A.M. (2003) Processing of vanadium: A review. Minerals Engineering, 16(9): 793-805
Mulak, W., Szymczycha, A., Lesniewicz, A., Zyrnicki, W. (2006) Physicochem. Probl. Miner. Process, 40: 69-76
Navarro, R., Guzman, J., Saucedo, I., Revilla, J., Guibal, E. (2007) Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Management, 27(3): 425-438
Panias, D., Taxiarchou, M., Douni, I., Paspaliaris, I., Kontopoulos, A. (1996) Thermodynamic analysis of the reactions of iron oxides: Dissolution in oxalic acid. Canadian Metallurgical Quarterly, 35(4): 363-373
Pereira, A.L.D.S., Silva, C.N.D., Afonso, J.C., Mantovano, J.L. (2011) The importance of pre-treatment of spent hydrotreating catalysts on metals recovery. Química Nova, 34(1): 145-150
Poulson, S.R., Drever, J.I., Stillings, L.L. (1997) Aqueous Si-oxalate complexing, oxalate adsorption onto quartz, and the effect of oxalate upon quartz dissolution rates. Chemical Geology, 140(1-2): 1-7
Reda, M.R. (1991) Regeneration of spent hydroprocessing catalysts: 1: Effect of the iron(II)/iron(III) redox couple on the selectivity of the removal of metals. Industrial & Engineering Chemistry Research, 30(9): 2148-2151
Seyed, G.S.M., Azizi, A. (2018) Alkaline leaching of lead and zinc by sodium hydroxide: Kinetics modeling. Journal of Materials Research and Technology, 7(2): 118-125
Sjöberg, S., Öhman, L.O. (1985) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution: Part 13: A potentiometric and27Al nuclear magnetic resonance study of speciation and equilibria in the aluminium(III)-oxalic acid-hydroxide system. J. Chem. Soc., Dalton Trans, (12): 2665-2669
Steenken, G.E.W.K. (1978) U.S. Patent No. 4,087,510
Szymczycha-Madeja, A. (2011) Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide. Journal of Hazardous Materials, 186(2-3): 2157-2161
Villarreal, M.S., Kharisov, B.I., Torres-Martínez, L.M., Elizondo, V.N. (1999) Recovery of vanadium and molybdenum from spent petroleum catalyst of PEMEX. Industrial & Engineering Chemistry Research, 38(12): 4624-4628
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JMMB190613055L
objavljen u SCIndeksu: 24.02.2020.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0