Akcije

Facta universitatis - series: Electronics and Energetics
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 4 od 6  
Back povratak na rezultate
Electromagnetic field in biological tissue objects
(naslov ne postoji na srpskom)
Technical University of Sofia, Department of Electrical Apparaturs, Sofia, Bulgaria

e-adresa[iliana vmateev]@tu-sofia.bg
Ključne reči: 3D vector graphic; bioimpedance; measurement system; electromagnetic properties; electromagnetic field modeling; finite element method; biomagnetics
Sažetak
(ne postoji na srpskom)
In this paper a method for automatic 3D model building is presented. These models are suitable for investigations of electromagnetic field distribution with Finite Element Method (FEM). Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Bioimpedance measurement system is developed and electromagnetic properties, acquired by the system, are used in 3D FEM model. Achieved models are applied for electromagnetic field distribution investigation.
Reference
Dudykevych, T., Gersing, E., Thiel, F., Hellige, G. (2001) Impedance analyser module for EIT and spectroscopy using undersampling. Physiol Meas, 22(1): 19-24
Geddes, L.A. (1996) Who introduced the tetrapolar method for measuring resistance and impedance?. IEEE Engineering in Medicine and Biology Magazine, 15(5): 133
Gersing, E. (1991) Measuring electrical impedance of organs: Instrumental equipment for research and clinical use. Biomed Tech (Berl), 36(1-2): 6-11
Grimnes, S., Martinsen, O.G. (2000) Bioimpedance and bioelectricity basics. Academic Press
Hartley, R. (1994) Projective reconstruction and invariants from multiple images. IEEE PAMI, vol. 16, br. 10, str. 1036-1041
Marinova, I. (2000) Modeling, simulation and visualization of electromagnetic interaction in human body. Ashikaga, Japan, June
Marinova, I., Mateev, V. (2005) Virtual dynamic visualization of field distributions in human body. u: Symposiumon Electrical Apparatus and Technologies - SIELA Plovdiv, Proc, Bulgaria, June2-3, vol. 2, 2005
Mcinerney, T., Terzopoulos, D. (1996) Deformable models in medical image analysis: a survey. Med Image Anal, 1(2): 91-108
Pham, D.L., Xu, C., Prince, J.L. (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng, 2: 315-37
Pliquett, F., Pliquett, U. (1996) Passive electrical properties of human stratum corneum in vitro depending on time after separation. Biophys Chem, 58(1-2): 205-10
Rosell, J., Colominas, J., Riu, P., Pallas, R., Webster, J.G. (1988) Skin impedance from 1 Hz to 1 MHz. IEEE Trans Biomed Eng, 35(8): 649-51
Technologies, A. (2006) Agilent technologies impedance measurement handbook
Yamamoto, T., Yamamoto, Y. (1976) Electrical properties of the epidermal stratum corneum. Med Biol Eng, 14(2): 151-8
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/FUEE0902197M
objavljen u SCIndeksu: 21.10.2009.

Povezani članci

FME Transactions (2014)
Modelovanje bioimpedanse ljudske kože primenom distribuiranog necelog reda modifikovanog kole modela
Lazović Goran, i dr.

Serb J Electr Engineering (2017)
Medical image segmentation using modified active contour method
Voronin Viacheslav, i dr.

J Proc Ener Agri (2011)
Korišćenje električnih osobina osušenih dunja
Kertész Ákos, i dr.