Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 2 od 2  
Back povratak na rezultate
2018, vol. 34, br. 2, str. 229-238
Primena biljnih proteolitičkih enzima u tenderizaciji mesa zeca
Institute of Cryobiology and Food Technology, Sofia, Bulgaria

e-adresamaria.doneva@ikht.bg
Ključne reči: tenderizacija; meso zeca; papain; kivi; koren đumbira
Sažetak
Cilj ove studije je bio procena efekta biljnih proteolitičkih enzima na sirovo meso zeca. Ispitivanje je urađeno na uzorcima mesa zeca tretiranim papainom i biljnim prirodnim proteazama (ekstrakti kivija i korena đumbira). Dve varijante rastvora za mariniranje su bile pripremljene od svake biljne sirovine - 50% (w/w) i 100% w/w), sa trajanjem tretmana od 2h, 24h i 48h. Uočene su promene sledećih fizičko-hemijskih karakteristika mesa: pH, kapacitet zadržavanja vode, kalo kuvanja i količina slobodnih aminokiselina. Razlike u vrednostima ovih karakteristika su zabeležene, kako između kontrolnih i ispitnih uzoraka, tako i zavisno od trajanja terapije. Uzorci mesa marinirani ekstraktima papaine i đumbira, kapacitet zadržavanja vode dostigao je 6.74 ± 0.04% (papain), 5.58 ± 0.09% (varijanta 1) i 6.80 ± 0.11% (varijanta 2) nakon 48 sati tretmana. Kod mesa zeca mariniranog ekstraktima kivija, značajno povećanje kapaciteta zadržavanje vode je primećeno nakon 48 sati, 3.37 ± 0.07 (varijanta 3) i 6.84 ± 0,11 (varijanta 4). Uzorci korišćeni za testiranje su takođe pokazali manji kalo kuvanja u poređenju sa kontrolnim uzorcima. U kontrolnim uzorcima, kalo kuvanja se povećao sa 13.79% (2 sata) na 20.78% (48 sati). SDS-PAGE uzoraka mesa posle 48 h tretmana pokazuje smanjenje intenziteta aktina i miozinskih opsega u svim varijantama sa papain i biljnim ekstraktima. Elektroforetski obrazac uzoraka prikazuje proteolizu i degradaciju mišićnih proteina.
Reference
Ashie, I.N.A., Sorensen, T.L., Nielsen, P.M. (2002) Effects of Papain and a Microbial Enzyme on Meat Proteins and Beef Tenderness. Journal of Food Science, 67(6): 2138-2142
Chen, X., Zhang, Y., Gao, P., Luan, X. (2003) Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Marine Biology, 143(5): 989-993
Doneva, M., Dyankova, S., Miteva, D., Metodieva, P. (2016) Tenderization effect of plant proteases bromelain and papain on buffalo meat. Journal of Mountain Agriculture on the Balkans, 28-41; 19
Gokoglu, N., Yerlikaya, P., Ucak, I., Yatmaz, H.A. (2017) Effect of bromelain and papain enzymes addition on physicochemical and textural properties of squid (Loligo vulgaris). Journal of Food Measurement and Characterization, 11(1): 347-353
Ha, M., Bekhit, A.E.A., Carne, A., Hopkins, D.L. (2012) Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry, 134(1): 95-105
Istrati, D., Vizireanu, C., Dima, F. (2014) Efficiency of different type of tenderization for improving technological properties of bovine Biceps femoris muscle. Scientific Papers: Series D, Animal Science, 42, 245-250
Jorgova, V.K., Danchev, S., Kostov, A. (1989) Effect of bacterial enzyme preparation on the solubility and electrophoretic properties of muscle proteins. u: International Congress of Meat Science and Technology, Proceedings, 35, 913-917
Kanatt, S.R., Chawla, S.P., Sharma, A. (2015) Effect of radiation processing on meat tenderisation. Radiation Physics and Chemistry, 111: 1-8
Kemp, C.M., Parr, T. (2012) Advances in apoptotic mediated proteolysis in meat tenderisation. Meat Science, 92(3): 252-259
Ketnawa, S., Rawdkuen, S. (2011) Application of Bromelain Extract for Muscle Foods Tenderization. Food and Nutrition Sciences, 02(05): 393-401
Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259): 680-685
Li, U.L., Tang, H. (2001) Study advancement of meat tenderization technology. Meat Industry, 40-42; 11
Maiti, A.K., Ahlawat, S.S., Sharma, D.P., Khanna, N. (2008) Application of natural tenderizers in meat-a review. Agricultural Reviews, 226-230; 29
Murariu, M., Irimia, M., Aelenei, N., Drochiou, G. (2003) Spectrophotometric assay of amino acids in biological materials. Romanian Biotechnological Letters, 6, 2
Naveena, B., Mendiratta, S., Anjaneyulu, A. (2004) Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Science, 68(3): 363-369
Naveena, B.M., Mendiratta, S.K. (2001) Tenderisation of spent hen meat using ginger extract. British Poultry Science, 42(3): 344-349
Qihe, C., Guoqing, H., Yingchun, J., Hui, N. (2006) Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chemistry, 98(4): 624-629
Rawdkuen, S. (2012) Biochemical and microstructural characteristics of meat samples treated with different plant proteases. African Journal of Biotechnology, 11(76):
Zhang, B., Sun, Q., Liu, H., Li, S., Jiang, Z. (2017) Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT - Food Science and Technology, 78: 1-7
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/bah1802229D
objavljen u SCIndeksu: 13.07.2018.
Creative Commons License 4.0