• citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:11
  • full-text downloads in 30 days:6


article: 10 from 72  
Back back to result list
2016, vol. 9, iss. 1, pp. 5-14
Microorganisms as potential corrosion inhibitors of metallic materials
University of Belgrade, Technical Faculty, Bor
Keywords: microorganisms; corrosion; metals; inhibitors; bacterial strains
Corrosion presents the destruction of materials through chemical or electrochemical interactions with their environment. Interactions between the metal surface and bacterial cells or products of their metabolic activities can lead to microbially-influenced corrosion. Also, it is known that certain microorganisms can contribute to corrosion inhibition. In accordance to that, the literature dealing with the application of different microorganisms as a potentialy corrosion inhibitors of metals is investigated. Different bacterial strains as a corrosion inhibitor of a metalic materials are examined. Further, the role of extracellular polymeric substances in corrosion behavior of metals is emphasized. Based on the data presented in this work, it can be said that inhibition efficiency depends on microorganism as well as type of metal. Also, it is presented that some bacterial species can be used as a good corrosion inhibitor instead of toxic organic compounds.
Ashassi-Sorkhabi, H., Moradi-Haghighi, M., Zarrini, G. (2012) The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel. Materials Science and Engineering: C, 32(2): 303-309
Beech, I.B. (2004) Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. International Biodeterioration & Biodegradation, 53(3): 177-183
Beech, I.B., Sunner, J. (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Current opinion in biotechnology / Curr. Opin. Biotechnol., 15(3): 181-6
Beech, I.B., Campbell, S.A. (2008) Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment. Electrochimica Acta, 54(1): 14-21
Cheng, S., Tian, J., Chen, S., Lei, Y., Chang, X., Liu, T., Yin, Y. (2009) Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior. Materials Science and Engineering: C, 29(3): 751-755
Chongdar, S., Gunasekaran, G., Kumar, P. (2005) Corrosion inhibition of mild steel by aerobic biofilm. Electrochimica Acta, 50(24): 4655-4665
Cote, C., Rosas, O., Basseguy, R. (2015) Geobacter sulfurreducens: An iron reducing bacterium that can protect carbon steel against corrosion?. Corrosion Science, 94: 104-113
Cournet, A., Bergé, M., Roques, C., Bergel, A., Délia, M. (2010) Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa. Electrochimica Acta, 55(17): 4902-4908
Czaczyk, K., Myszk, K. (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16(6); 799-806
Dagbert, C., Meylheuc, T., Bellon-Fontaine, M. (2006) Corrosion behaviour of AISI 304 stainless steel in presence of a biosurfactant produced by Pseudomonas fluorescens. Electrochimica Acta, 51(24): 5221-5227
Dagbert, C., Meylheuc, T., Bellon-Fontaine, M. (2008) Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens. Electrochimica Acta, 54(1): 35-40
Duan, J., Wu, S., Zhang, X., Huang, G., Du, M., Hou, B. (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochimica Acta, 54(1): 22-28
Dubiel, M., Hsu, C. H., Chien, C. C., Mansfeld, F., Newman, D. K. (2002) Microbial Iron Respiration Can Protect Steel from Corrosion. Applied and Environmental Microbiology, 68(3): 1440-1445
Enning, D., Venzlaff, H., Garrelfs, J., Dinh, H.T., Meyer, V., Mayrhofer, K., Hassel, A.W., Stratmann, M., Widdel, F. (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental microbiology / Environ. Microbiol., 14(7): 1772-87
Finkenstadt, V.L., Côté, G.L., Willett, J.L. (2011) Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides. Biotechnology letters / Biotechnol. Lett., 33(6): 1093-100
Ghafari, M.D., Bahrami, A., Rasooli, I., Arabian, D., Ghafari, F. (2013) Bacterial exopolymeric inhibition of carbon steel corrosion. International Biodeterioration & Biodegradation, 80: 29-33
Ha, J., Gélabert, A., Spormann, A.M., Brown, G.E. (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochimica et Cosmochimica Acta, 74(1): 1-15
Hori, K., Matsumoto, S. (2010) Bacterial adhesion: From mechanism to control. Biochemical Engineering Journal, 48(3): 424-434
Ignatova-Ivanova,, Ivanov, T., Exopolysaccharides, R. (2014) from Lactic acid bacetria as corrosion inhibitors. Journal of Life Sciences, 940-945; 8
Ismail, K.M., Gehrig, T., Jayaraman, A., Wood, T. K., Trandem, K., Arps, P. J., Earthman, J. C. (2002) Corrosion Control of Mild Steel by Aerobic Bacteria under Continuous Flow Conditions. Corrosion, 58(5): 417-423
Javed, M.A., Stoddart, P.R., Palombo, E.A., McArthur, S.L., Wade, S.A. (2014) Inhibition or acceleration: Bacterial test media can determine the course of microbiologically influenced corrosion. Corrosion Science, 86: 149-158
Jayaraman, A., Earthman, J. C., Wood, T. K. (1997) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Applied Microbiology and Biotechnology, 47(1): 62-68
Jayaraman, A., Hallock, P. J., Carson, R. M., Lee, C.-C., Mansfeld, F. B., Wood, T. K. (1999) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Applied Microbiology and Biotechnology, 52(2): 267-275
Jayaraman, A., Cheng, E. T., Earthman, J. C., Wood, T. K. (1997) Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Applied Microbiology and Biotechnology, 48(1): 11-17
Jayaraman, A., Sun, A.K., Wood, T.K. (1998) Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. Journal of applied microbiology / J. Appl. Microbiol., 84(4): 485-92
Jayaraman, A., Ornek, D., Duarte, D. A., Lee, C. -C., Mansfeld, F. B., Wood, T. K. (1999) Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Applied Microbiology and Biotechnology, 52(6): 787-790
Jayaraman, A., Mansfeld, F.B., Wood, T.K. (1999) Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. Journal of Industrial Microbiology and Biotechnology, 22(3): 167-175
Jin, J., Wu, G., Zhang, Z., Guan, Y. (2014) Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater. Bioresource Technology, 165: 162-165
Juzeliūnas, E., Ramanauskas, R., Lugauskas, A., Leinartas, K., Samulevičienė, M., Sudavičius, A. (2006) Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection. Electrochimica Acta, 51(27): 6085-6090
Kamal, C., Sethuraman, M.G. (2012) Spirulina platensis – A novel green inhibitor for acid corrosion of mild steel. Arabian Journal of Chemistry, 5(2): 155-161
Kip, N., van Veen, J.A. (2014) The dual role of microbes in corrosion. ISME Journal, 9(3): 542-551
Korenblum, E., Weid, I. der, Santos, A.L.S., Rosado, A.S., Sebastian, G.V., Coutinho, C.M.L.M., Magalhaes, F.C.M., Paiva, M.M., Seldin, L. (2005) Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. Journal of Applied Microbiology, 98(3): 667-675
Lee, A.K., Buehler, M.G., Newman, D.K. (2006) Influence of a dual-species biofilm on the corrosion of mild steel. Corrosion Science, 48(1): 165-178
Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016) Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports, 6: 20190
LI, S., Zhang, Y., Liu, J., YU, M. (2008) Corrosion Behavior of Steel A3 Influenced by Thiobacillus Ferrooxidans. Acta Physico-Chimica Sinica, 24(9): 1553-1557
Lin, J., Ballim, R. (2012) Biocorrosion control: Current strategies and promising alternatives. African Journal of Biotechnology, 11(91); 15736-15747
Liu, H., Fang, H.H. P. (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80(7): 806-811
Mansfeld, F., Hsu, H., Örnek, D., Wood, T. K., Syrett, B. C. (2002) Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media. Journal of The Electrochemical Society, 149(4): B130
Mert, B.D., Mert, M., Kardaş, G., Yazıcı, B. (2011) The role of Spirulina platensis on corrosion behavior of carbon steel. Materials Chemistry and Physics, 130(1-2): 697-701
Milić, S.M., Antonijević, M.M. (2009) Some aspects of copper corrosion in presence of benzotriazole and chloride ions. Corrosion Science, 51(1): 28-34
Miranda, E., Bethencourt, M., Botana, F.J., Cano, M.J., Sánchez-Amaya, J.M., Corzo, A., de Lomas, J. G., Fardeau, M.L., Ollivier, B. (2006) Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corrosion Science, 48(9): 2417-2431
Moradi, M., Xiao, T., Song, Z. (2015) Investigation of corrosion inhibitory process of marine Vibrio neocaledonicus sp. bacterium for carbon steel. Corrosion Science, 100: 186-193
More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D., Surampalli, R.Y. (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management, 144: 1-25
Neyens, E. (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 106(2-3): 83-92
Örnek, D., Jayaraman, A., Syr, B. (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Applied Microbiology and Biotechnology, 58(5): 651-657
Petrović-Mihajlović, M., Antonijević, M. (2015) Copper corrosion inhibitors. Period 2008-2014. International Journal of Electrochemical Science, 10(2); 1027-1053
Ponmariappan, S., Maruthamuthu, S., Palaniswamy, N., Palaniappan, R. (2004) Corrosion Control by Bacterial Biofilms- An Overview. Corrosion Reviews, 22(4)
Priester, J. H., Olson, S. G., Webb, S. M., Neu, M. P., Hersman, L. E., Holden, P. A. (2006) Enhanced Exopolymer Production and Chromium Stabilization in Pseudomonas putida Unsaturated Biofilms. Applied and Environmental Microbiology, 72(3): 1988-1996
Qu, Q., He, Y., Wang, L., Xu, H., Li, L., Chen, Y., Ding, Z. (2015) Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2. Corrosion Science, 91: 321-329
San, N.O., Nazır, H., Dönmez, G. (2012) Evaluation of microbiologically influenced corrosion inhibition on Ni–Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corrosion Science, 65: 113-118
San, N.O., Nazır, H., Dönmez, G. (2014) Microbially influenced corrosion and inhibition of nickel–zinc and nickel–copper coatings by Pseudomonas aeruginosa. Corrosion Science, 79: 177-183
San, N.O., Nazır, H., Dönmez, G. (2011) Microbial corrosion of Ni–Cu alloys by Aeromonas eucrenophila bacterium. Corrosion Science, 53(6): 2216-2221
San, N.O., Nazır, H., Dönmez, G. (2012) Microbiologically influenced corrosion of NiZn alloy coatings by Delftia acidovorans bacterium. Corrosion Science, 64: 198-203
Stadler, R., Wei, L., Fürbeth, W., Grooters, M., Kuklinski, A. (2010) Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS). Materials and Corrosion, 61(12): 1008-1016
Stadler, R., Fuerbeth, W., Harneit, K., Grooters, M., Woellbrink, M., Sand, W. (2008) First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates. Electrochimica Acta, 54(1): 91-99
Tao, X., Moradi, M., Zhenlun, S., Lijing, Y., Tao, Y., Lifeng, H. (2016) Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel in Sulphuric Acid Solution. Journal of Chinese Society for Corrosion and Protection, 36(2); 150-156
van Leeuwen, S.S., Kralj, S., van Geel-Schutten, I.H., Gerwig, G.J., Dijkhuizen, L., Kamerling, J.P. (2008) Structural analysis of the alpha-D-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydrate research / Carbohydr. Res., 343(7): 1237-50
Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K.J.J., Hassel, A.W., Widdel, F., Stratmann, M. (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science, 66: 88-96
Videla, H.A., Herrera, L.K. (2009) Understanding microbial inhibition of corrosion. A comprehensive overview. International Biodeterioration & Biodegradation, 63(7): 896-900
Wadood, H.Z., Rajasekar, A., Ting, Y., Sabari, A.N. (2015) Role of Bacillus subtilis and Pseudomonas aeruginosa on Corrosion Behaviour of Stainless Steel. Arabian Journal for Science and Engineering, 40(7): 1825-1836
Yuan, S.J., Choong, A.M.F., Pehkonen, S.O. (2007) The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu–Ni alloy. Corrosion Science, 49(12): 4352-4385
Zarasvand, K.A., Rai, V. R. (2014) Microorganisms: Induction and inhibition of corrosion in metals. International Biodeterioration & Biodegradation, 87: 66-74
Zuo, R. (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology, 76(6): 1245-1253
Zuo, R., Wood, T.K. (2004) Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Applied Microbiology and Biotechnology, 65(6): 747-753
Zuo, R., Kus, E., Mansfeld, F., Wood, T.K. (2005) The importance of live biofilms in corrosion protection. Corrosion Science, 47(2): 279-287


article language: Serbian
document type: Review Paper
DOI: 10.5937/ror1601005T
published in SCIndeks: 26/12/2016
Creative Commons License 4.0

Related records