|
Reference
|
|
*** (2020) Website of surrey space center. http://www.ee.surrey.ac.uk/SSC/ SSHP (accessed Sep. 19, 2020)
|
|
*** (2020) C.-4& 5 ESA: Canadian advanced nanospace eXperiment-4&5. https://earth.esa.int/web/ eoportal/satellite-missions/c-missions/canx-4-5 (accessed Sep. 19, 2020)
|
|
*** (2020) BST BAT-100. Berlin Space Technologies, Accessed: Sep. 19, 2020. [Online]. Available: https://www.berlin-space-tech.com/wpcontent/uploads/2020/07/PFR-PR10-Battery-FlyerV1.00-.pdf
|
|
*** ESA: TurkSat-3USat. https://directory.eoportal. org/web/ eoportal/satellite-missions/t/turksat-3usat (accessed Sep. 19, 2020)
|
|
Ali, M.R. (2009) Design and implementation of ground support equipment for characterizing the performance of XPOD and CNAPS & thermal analysis of CNAPS pressure regulator valve. University of Toronto-Department of Aerospace Engineering, MSc. thesis
|
|
Anderson, B., Justus, C., Batts, G. (2001) Guidelines for the selection of near-Earth thermal environment parameters for spacecraft design. Nasa TM-2001-211221; no. October; p. 32; Available: http://www.dept.aoe.vt.edu/~cdhall/ courses/aoe4065/NASADesignSPs/tm211221.pdf
|
|
Anh, N.D., Hieu, N.N., Linh, N.N. (2012) A dual criterion of equivalent linearization method for nonlinear systems subjected to random excitation. Acta Mechanica, 223(3): 645-654
|
|
Anh, N.D., Zakovorotny, V.L., Hieu, N.N., Diep, D.V. (2012) A dual criterion of stochastic linearization method for multi-degree-of-freedom systems subjected to random excitation. Acta Mechanica, 223(12): 2667-2684
|
|
Anh, N.D., Hieu, N.N., Chung, P.N., Anh, N.T. (2016) Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization. Applied Thermal Engineering, 94: 607-614
|
|
Arduini, C., Laneve, G., Folco, S. (1998) Linearized techniques for solving the inverse problem in the satellite thermal control. Acta Astronautica, 43(9): 180-185
|
|
Baturkin, V. (2005) Micro-satellites thermal control: Concepts and components. Acta Astronautica, 56(1-2): 161-170
|
|
Bulut, M., Sozbir, O.R., Sozbir, N. (2017) Thermal control of Turksat 3U nanosatellite. u: 5th Int. Symp. Innov. Technol. Eng. Sci., no. October
|
|
Bulut, M., Sozbir, N. (2015) Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations. Applied Thermal Engineering, 75: 1076-1083
|
|
Corpino, S., Caldera, M., Nichele, F., Masoero, M., Viola, N. (2015) Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica, 115: 247-261
|
|
Cotten, B.S. (2014) Design, analysis, implementation, and testing of the thermal control, and attitude determination and control systems for the CANX-7 nanosatellite mission. University of Toronto, MSc. thesis
|
|
Cullimore, B.A., Ring, S.G., Johnson, D.A. (2015) SINDA/FLUINT user's manual version 5. vol. 4, no. June
|
|
Czernik, S. (2004) Design of the thermal control system for compass: 1. University of Applied Sciences Aachen, Diploma thesis
|
|
Day, M. (1999) 30 years of commercial components in space: Selection techniques without formal qualification. u: 13th Annual AIAA/USU Conference on Small Satellites. SSC99-IIA-2, pp. 1-8; [Online]. Available: http://www.ee. surrey.ac .uk/EE/CSER/UOSAT
|
|
Diaz-Aguado, M.F., Greenbaum, J., Fowler, W.T., Lightsey, E. (2006) Small satellite thermal design, test, and analysis. u: Modeling, Simulation, and Verification of Space-based Systems III, 6221(512): 622109-622109
|
|
Dinh, D.Q. (2012) Thermal modeling OF nanosat. San José State University, MSc. thesis
|
|
Donabedian, M. (2004) Spacecraft thermal control handbook: Volume II: Cryogenics. Spacecraft Thermal Control Handbook
|
|
Elliottu, J.M. (2014) The thermal design and analysis of the CanX-4/-5 and NEMO-AM nanosatellites. U. of T. (Canada)., and A. S. and Engineering
|
|
Escobar, E., Diaz, M., Zagal, J.C. (2016) Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission. Applied Thermal Engineering, 105: 490-500
|
|
Fortescue, P., Stark, J. (2011) Spacecraft systems engineering. John Wiley & Sons, Ltd, 3rd ed
|
|
Gaite, J. (2011) Nonlinear analysis of spacecraft thermal models. Nonlinear Dynamics, 65(3): 283-300
|
|
Gaite, J., Fernández-Rico, G. (2012) Linear approach to the orbiting spacecraft thermal problem. Journal of Thermophysics and Heat Transfer, 26(3): 511-522
|
|
Gaite, J., Sanz-Andrés, A., Pérez-Grande, I. (2009) Nonlinear analysis of a simple model of temperature evolution in a satellite. Nonlinear Dynamics, 58(1-2): 405-415
|
|
Garzon, M.M. (2012) Development and analysis of thermal design for the OSIRIS-3U cubesat. The Pennsylvania State University, MSc. thesis
|
|
Gilmore, D.G. (2002) Spacecraft thermal control handbook: Volume I
|
|
Gohardani, A.S. (2018) Small satellites: Observations and considerations. u: 2018 AIAA Aerospace Sciences Meeting, 1-12
|
|
Jacques, L. (2009) Thermal design of the Oufti-1 nanosatellite. Centre Spatial de Liège, MSc. thesis
|
|
K E.Boushon (2018) Thermal analysis and control of small satellites in low Earth orbit. Missouri University of Science and Technology, [Online]. Available: https://scholarsmine.mst.edu/masters_theses/7755
|
|
Karam, R. (1998) Satellite thermal control for systems engineers
|
|
Kopacz, J.R., Herschitz, R., Roney, J. (2020) Small satellites an overview and assessment. Acta Astronautica, 170: 93-105
|
|
NASA (2020) What are SmallSats and CubeSats. https://www.nasa.gov/content/what-are-smallsatsand-cubesats (accessed Sep. 19, 2020)
|
|
Oshima, K., Oshima, Y. (1968) Analytical approach to the thermal design of spacecraft. Inst. Sp. Aeronaut. Sci. Tokyo, no. Report No. 419
|
|
Pérez-Grande, I., Sanz-Andrés, A., Guerra, C., Alonso, G. (2009) Analytical study of the thermal behaviour and stability of a small satellite. Applied Thermal Engineering, 29(11-12): 2567-2573
|
|
Poucet, M.C. (2012) Phase-B thermal control subsystem design for the ESEO satellite. Politecnico di Milano, Msc. thesis
|
|
Silva, D.F., Muraoka, I., Garcia, E.C. (2014) Thermal control design conception of the Amazonia-1 satellite. Journal of Aerospace Technology and Management, 6(2): 169-176
|
|
Swartwout, M., Jayne, C. (2016) University-class spacecraft by the numbers: Success, failure, debris: But mostly success. u: Proc. AIAA/USU Conf. Small Satell. Conf. Small Satell., no. August, [Online]. Available: http://digitalcommons. usu.edu/smallsat/2016/ TS13Education/1
|
|
Swartwout, M. (2018) Reliving 24 years in the next 12 minutes: A statistical and personal history of university-class satellites. u: Proc. 32nd AIAA/USU Conf. Small Satell, pp. 1-20, 2018; [Online]
|
|
van Boxtel, T. (2015) Thermal modeling and design of the DelFFi satellites. Delft University of Technology, MSc. thesis; 190-190; [Online]
|
|
Vanoutryve, C.B. (2008) A thermal analysis and design tool for small spacecraft. San Jose State University, MSc. thesis
|
|
Verheire, E., van der Haegen, V., Desplentere, F., Testani, P. (2015) Thermal analysis of the QARMAN re-entry satellite. von Karman Institute for Fluid Dynamics Aeronautics-Aerospace Department, MSc. thesis; p. 142
|
|
|
|