Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 3 od 192  
Back povratak na rezultate
2021, vol. 49, br. 4, str. 1014-1024
Modeliranje termičkog upravljanja malim satelitom univerzitetske klase i analiza u fazi nakon misije
aSpace Technology Center Kobry El koba, Cairo, Egypt
bMilitary Technical College Kobry El koba, Department of Mechanical Power and Energy, Cairo, Egypt

e-adresaali.elmaihy@mtc.edu.eg
Ključne reči: aerospace engineering; satellite thermal control; modeling
Sažetak
Prikazana je analiza termičkog upravljanja malom svemirskom letelicom u fazi nakon misije. Distribucija unutrašnjih komponenata satelita je modifikovana da bi se ispunili termički zahtevi pri korišćenju sistema pasivnog termičkog upravljanja. Posle misije satelit će koristiti AMSAT zajednica kao transponder, pri čemu će se korisno opterećenje AMSAT-a održavati u potpunosti najmanje dve godine. Thermal Desktop softver je uveden kod pomenute letelice. Konačna analiza predviđa da sistem pasivnog termičkog upravljanja održava temperaturu svih elemenata letelice u okviru temperaturnih granica. Variranje temperature kod +X solarnog panela iznosi 750 S što je manje nego kod +Z i -Z panela, a što je bilo 1000 S. Promena temperature opreme je u skladu sa promenom temperature na panelima. Tačnost podataka verifikovana je softver paketom ESATAN-TMSs.
Reference
*** (2020) Website of surrey space center. http://www.ee.surrey.ac.uk/SSC/ SSHP (accessed Sep. 19, 2020)
*** (2020) C.-4& 5 ESA: Canadian advanced nanospace eXperiment-4&5. https://earth.esa.int/web/ eoportal/satellite-missions/c-missions/canx-4-5 (accessed Sep. 19, 2020)
*** (2020) BST BAT-100. Berlin Space Technologies, Accessed: Sep. 19, 2020. [Online]. Available: https://www.berlin-space-tech.com/wpcontent/uploads/2020/07/PFR-PR10-Battery-FlyerV1.00-.pdf
*** ESA: TurkSat-3USat. https://directory.eoportal. org/web/ eoportal/satellite-missions/t/turksat-3usat (accessed Sep. 19, 2020)
Ali, M.R. (2009) Design and implementation of ground support equipment for characterizing the performance of XPOD and CNAPS & thermal analysis of CNAPS pressure regulator valve. University of Toronto-Department of Aerospace Engineering, MSc. thesis
Anderson, B., Justus, C., Batts, G. (2001) Guidelines for the selection of near-Earth thermal environment parameters for spacecraft design. Nasa TM-2001-211221; no. October; p. 32; Available: http://www.dept.aoe.vt.edu/~cdhall/ courses/aoe4065/NASADesignSPs/tm211221.pdf
Anh, N.D., Hieu, N.N., Linh, N.N. (2012) A dual criterion of equivalent linearization method for nonlinear systems subjected to random excitation. Acta Mechanica, 223(3): 645-654
Anh, N.D., Zakovorotny, V.L., Hieu, N.N., Diep, D.V. (2012) A dual criterion of stochastic linearization method for multi-degree-of-freedom systems subjected to random excitation. Acta Mechanica, 223(12): 2667-2684
Anh, N.D., Hieu, N.N., Chung, P.N., Anh, N.T. (2016) Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization. Applied Thermal Engineering, 94: 607-614
Arduini, C., Laneve, G., Folco, S. (1998) Linearized techniques for solving the inverse problem in the satellite thermal control. Acta Astronautica, 43(9): 180-185
Baturkin, V. (2005) Micro-satellites thermal control: Concepts and components. Acta Astronautica, 56(1-2): 161-170
Bulut, M., Sozbir, O.R., Sozbir, N. (2017) Thermal control of Turksat 3U nanosatellite. u: 5th Int. Symp. Innov. Technol. Eng. Sci., no. October
Bulut, M., Sozbir, N. (2015) Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations. Applied Thermal Engineering, 75: 1076-1083
Corpino, S., Caldera, M., Nichele, F., Masoero, M., Viola, N. (2015) Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica, 115: 247-261
Cotten, B.S. (2014) Design, analysis, implementation, and testing of the thermal control, and attitude determination and control systems for the CANX-7 nanosatellite mission. University of Toronto, MSc. thesis
Cullimore, B.A., Ring, S.G., Johnson, D.A. (2015) SINDA/FLUINT user's manual version 5. vol. 4, no. June
Czernik, S. (2004) Design of the thermal control system for compass: 1. University of Applied Sciences Aachen, Diploma thesis
Day, M. (1999) 30 years of commercial components in space: Selection techniques without formal qualification. u: 13th Annual AIAA/USU Conference on Small Satellites. SSC99-IIA-2, pp. 1-8; [Online]. Available: http://www.ee. surrey.ac .uk/EE/CSER/UOSAT
Diaz-Aguado, M.F., Greenbaum, J., Fowler, W.T., Lightsey, E. (2006) Small satellite thermal design, test, and analysis. u: Modeling, Simulation, and Verification of Space-based Systems III, 6221(512): 622109-622109
Dinh, D.Q. (2012) Thermal modeling OF nanosat. San José State University, MSc. thesis
Donabedian, M. (2004) Spacecraft thermal control handbook: Volume II: Cryogenics. Spacecraft Thermal Control Handbook
Elliottu, J.M. (2014) The thermal design and analysis of the CanX-4/-5 and NEMO-AM nanosatellites. U. of T. (Canada)., and A. S. and Engineering
Escobar, E., Diaz, M., Zagal, J.C. (2016) Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission. Applied Thermal Engineering, 105: 490-500
Fortescue, P., Stark, J. (2011) Spacecraft systems engineering. John Wiley & Sons, Ltd, 3rd ed
Gaite, J. (2011) Nonlinear analysis of spacecraft thermal models. Nonlinear Dynamics, 65(3): 283-300
Gaite, J., Fernández-Rico, G. (2012) Linear approach to the orbiting spacecraft thermal problem. Journal of Thermophysics and Heat Transfer, 26(3): 511-522
Gaite, J., Sanz-Andrés, A., Pérez-Grande, I. (2009) Nonlinear analysis of a simple model of temperature evolution in a satellite. Nonlinear Dynamics, 58(1-2): 405-415
Garzon, M.M. (2012) Development and analysis of thermal design for the OSIRIS-3U cubesat. The Pennsylvania State University, MSc. thesis
Gilmore, D.G. (2002) Spacecraft thermal control handbook: Volume I
Gohardani, A.S. (2018) Small satellites: Observations and considerations. u: 2018 AIAA Aerospace Sciences Meeting, 1-12
Jacques, L. (2009) Thermal design of the Oufti-1 nanosatellite. Centre Spatial de Liège, MSc. thesis
K E.Boushon (2018) Thermal analysis and control of small satellites in low Earth orbit. Missouri University of Science and Technology, [Online]. Available: https://scholarsmine.mst.edu/masters_theses/7755
Karam, R. (1998) Satellite thermal control for systems engineers
Kopacz, J.R., Herschitz, R., Roney, J. (2020) Small satellites an overview and assessment. Acta Astronautica, 170: 93-105
NASA (2020) What are SmallSats and CubeSats. https://www.nasa.gov/content/what-are-smallsatsand-cubesats (accessed Sep. 19, 2020)
Oshima, K., Oshima, Y. (1968) Analytical approach to the thermal design of spacecraft. Inst. Sp. Aeronaut. Sci. Tokyo, no. Report No. 419
Pérez-Grande, I., Sanz-Andrés, A., Guerra, C., Alonso, G. (2009) Analytical study of the thermal behaviour and stability of a small satellite. Applied Thermal Engineering, 29(11-12): 2567-2573
Poucet, M.C. (2012) Phase-B thermal control subsystem design for the ESEO satellite. Politecnico di Milano, Msc. thesis
Silva, D.F., Muraoka, I., Garcia, E.C. (2014) Thermal control design conception of the Amazonia-1 satellite. Journal of Aerospace Technology and Management, 6(2): 169-176
Swartwout, M., Jayne, C. (2016) University-class spacecraft by the numbers: Success, failure, debris: But mostly success. u: Proc. AIAA/USU Conf. Small Satell. Conf. Small Satell., no. August, [Online]. Available: http://digitalcommons. usu.edu/smallsat/2016/ TS13Education/1
Swartwout, M. (2018) Reliving 24 years in the next 12 minutes: A statistical and personal history of university-class satellites. u: Proc. 32nd AIAA/USU Conf. Small Satell, pp. 1-20, 2018; [Online]
van Boxtel, T. (2015) Thermal modeling and design of the DelFFi satellites. Delft University of Technology, MSc. thesis; 190-190; [Online]
Vanoutryve, C.B. (2008) A thermal analysis and design tool for small spacecraft. San Jose State University, MSc. thesis
Verheire, E., van der Haegen, V., Desplentere, F., Testani, P. (2015) Thermal analysis of the QARMAN re-entry satellite. von Karman Institute for Fluid Dynamics Aeronautics-Aerospace Department, MSc. thesis; p. 142
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2104014E
primljen: 15.06.2021.
prihvaćen: 15.08.2021.
objavljen u SCIndeksu: 26.11.2021.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka