Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 4 od 192  
Back povratak na rezultate
Modelovanje ekvivalencije matematičkih izraza u početnoj nastavi
Univerzitet u Beogradu, Učiteljski fakultet, Srbija

e-adresamarijana.zeljic@uf.bg.ac.rs
Projekat:
Koncepcije i strategije obezbeđivanja kvaliteta bazičnog obrazovanja i vaspitanja (MPNTR - 179020)

Ključne reči: ekvivalencija matematičkih izraza; modelovanje; matematički simbolizam; algebra
Sažetak
Jedan od pojmova koji je u literaturi prepoznat kao ključan za razumevanje algebarskih ideja je pojam ekvivalentnosti izraza. Za razumevanje navedenog pojma važan je kontekst koji se koristi kao osnova za razvijanje značenja, kao i jezik kojim se iskazuju generalizacije. Cilj rada je dvojak: a) ispitati da li kontekst tekstualnog zadatka i aktivnosti modelovanja utiču na razumevanje transformacije izraza u ekvivalentne forme; b) utvrditi da li na razumevanje ekvivalentnosti izraza utiče nivo apstraktnosti izraza (algebarski ili aritmetički) koji se koriste. Istraživanje je kvazieksperimentalnog dizajna sa dve eksperimentalne i kontrolnom grupom. Uzorak čini 148 učenika četvrtog razreda. Postojanje statistički značajnih razlika između učenika eksperimentalnih i kontrolne grupe upućuje da proces modelovanja utiče na razvijanje pojma ekvivalentnosti izraza. U ovom istraživanju nisu se pokazale razlike u rezultatima učenika koji su bili podučavani pomoću algebarskih, odnosno aritmetičkih izraza. Ovo implicira da razumevanje ekvivalentnosti koje je razvijano kroz proces modelovanja nije u vezi sa nivoom apstraktnosti matematičkog jezika koji se koristi, već da na osnovu razumevanja značenja pojma učenici sa podjednakom uspešnošću mogu transformisati i aritmetičke i algebarske izraze.
Reference
Banerjee, R., Subramaniam, K., Naik, S. (2008) Bridging arithmetic and algebra: Evolution of a teaching sequence. u: Fogueras O.; Cortina J. L.; Alatorre S.; Rojano T.; Sepulveda A. [ur.] Proceedings of the Joint Meeting of PME 32, Morelia, México: Cinvestav-UMSNH, 32(2): 121-128
Blanton, M., Kaput, J. (2005) Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5): 412-446
Blum, W. (1994) Mathematical modeling in mathematics education and instruction. u: Breiteig T.; Huntley I.; Kaiser-Messmer G. [ur.] Teaching and learning mathematics in context, Chichester: Ellis Horwood Limited, 3-14
Blum, W., Leiss, D. (2007) How do students and teachers deal with modelling problems. u: Haines C.; Galbraith P.; Blum W.; Khan S. [ur.] Mathematical modeling: Education, engineering, and economics, Chichester: Horwood, 222-231
Booth, L. (1988) Children's difficulties in beginning algebra. u: Coxford A. F. [ur.] The Ideas of Algebra, Reston: National Council of Teachers of Mathematics, K-12 (20-32)
Cai, J. (2014) Searching for evidence of curricular effect on the teaching and learning of mathematics: Some insights from the LieCal project. Mathematics Education Research Journal, 26: 811-831
Cerulli, M., Mariotti, M.A. (2001) Arithmetic & algebra, continuity or cognitive break?: The case of Francesca. u: Van-den Heuvel Pannhueizen M. [ur.] Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Utrecht, Netherlands: PME, 2: 225-232
Chaiklin, S., Lesgold, S.B. (1984) Prealgebra students' knowledge of algebraic tasks with arithmetic expressions. Retrieved May 20, 2020. from www: https://apps.dtic.mil/dtic/tr/fulltext/u2/a144672.pdf
Chazan, D. (2000) Beyond formulas in mathematics and teaching: Dynamics of the high school algebra classroom. New York: Teachers College Press
Crowley, L., Thomas, T., Tall, D. (1994) Algebra, Simbols, and Translation of Meaning. u: Procedings of PME 18, Lisbon II, pp. 240-247
Ding, M., Li, X. (2014) Transition from concrete to abstract representation: The distributive property in a Chinese textbook series. Educational Studies in Mathematics, 87: 103-121
Dreyfus, T., Eisenberg, T. (1982) Intuitive functional concepts: A baseline study on intuitions. Journal for Research in Mathematics Education, 13(5): 360-380
Duval, R. (1999) Representation, vision & visualization: Cognitive functions in mathematical thinking: Basic issues for learning. u: Hitt F.; Santos M. [ur.] Proceedings of the 21st North American PME Conference, Cuernavaca, Morelos, Mexico, 3-26
Fagnant, A., Vlassis, J. (2013) Schematic representations in arithmetical problem solving: Analysis of their impact on grade 4 students. Educational Studies in Mathematics, 84: 149-168
Fuji, T., Stephens, M. (2001) Fostering an understanding of algebraic generalization trough numerical expressions: The role of quasi-variables. u: Chick H.; Stacey K.; Vincent J. [ur.] Proceedings of the 12th ICMI Study Conference: The Future of the Teaching & Learning of Algebra, Melbourne: The University of Melbourne, 1: 258-264
Gerofsky, S. (2009) Genre, simulacra, impossible exchange, & the real: How postmodern theory problematizes word problems. u: Verschaffel L.; Greer B.; Dooren W.V. [ur.] Words and worlds: Modeling verbal descriptions of situations, Rotterdam: Sense Publishing, 21-38
Herscovics, N., Linchevski, L. (1994) A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1): 59-78
Ilić, S.M., Zeljić, M.Ž. (2017) Pravila stalnosti zbira i razlike kao osnova strategija računanja. Inovacije u nastavi - časopis za savremenu nastavu, vol. 30, br. 1, str. 55-66
Kabaca, T. (2013) Using dynamic mathematics software to teach one-variable inequalities by the view of semiotic registers. Eurasia Journal of Mathematics, 9(1): 73-81
Kieran, C. (1992) The learning and teaching of school algebra. u: Grouws D.A. [ur.] Handbook of research on mathematics teachingand learning, New York: Macmillan, 390-419
Kieran, C. (1996) The changing face of school algebra. u: Alsina C.; Alvares J.; Hodgson B.; Laborde C; Pérez A. [ur.] ICME 8: Selected lectures, Seville: S. A. E. M. 'Thales, 271-290
Kieran, C., Boileau, A., Tanguay, D., Drijvers, P. (2013) Design researchers' documentational genesis in a study on equivalence of algebraic expressions. ZDM Mathematics Education, 45: 1045-1056
Kieran, C. (2004) Algebraic thinking in the early grades: What is it?. Mathematics Educator (Singapore), 8(1): 139-151
Lee, L., Wheeler, D. (1989) The arithmetic connection. Educational Studies Mathematics, 20: 41-54
Liebenberg, R.E., Linchevski, L., Sasman, M.C., Olivier, A. (1999) Focusing on the structural aspects of numerical expressions. u: Kuiper J. [ur.] Proceedings of the Seventh Annual Conference of the Southern African Association for Research in Mathematics & Science Education, Harare, Zimbabwe, 249-256
Linchevski, L., Livneh, D. (1999) Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40: 173-196
Lins, R., Kaput, J. (2001) The early development of algebraic reasoning: The current state of the field. u: Chick H.; Stacey K.; Vincent J.; Vincent J. [ur.] The Future of the Teaching & Learning of Algebra, Proceedings of the 12 th ICMI Study Conference, Melbourne: The University of Melbourne, 47-70
Livneh, D., Linchevski, L. (2007) Algebrification of arithmetic: Developing algebraic structure sense in the context of arithmetic. u: Woo J.H.; Lew H.C.; Park K.S.; Seo D.Y. [ur.] Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, Seoul: PME, 3: 217-224
Malara, N., Navarra, G. (2001) 'Brioshi' & other mediation tools employed in a teaching of arithmetic from a relational point of view with the aim of approaching algebra as a language. u: Chick H.; Stacey K.; Vincent J.; Vincent J. [ur.] The Future of the Teaching & learning of Algebra, Proceedings of the 12 th ICMI Study Conference, Melbourne: University of Melbourne, 412-419
Malara, N., Iaderosa, R. (1999) The interweaving of arithmetic and algebra: Some questions about syntactic and structural aspects and their teaching and learning. u: Schwank I. [ur.] Proceedings of the First Conference of the European Society for Research in Mathematics Education, Osnabrueck: Forschungsinstitut fuer Mathematikdidaktik, 2: 159-171
Ni, Y., Zhou, D.R., Cai, J., Li, X., Li, Q., Sun, I.X. (2018) Improving cognitive and affective learning outcomes of students through mathematics instructional tasks of high cognitive dem. Journal of Educational Research, 111(6): 704-719
Panasuk, R.M., Beyranev, M.L. (2010) Algebra students' ability to recognize multiple representations and achievement. International Journal for Mathematics Teaching and Learning, 22: 1-22
Rivera, F.D. (2010) Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73(3): 297-328
Sfard, A., Linchevski, L. (1994) The gains and pitfalls of reification: The case of algebra. Educational Studies in Mathematics, 26(2/3): 15-39
Sfard, A. (1991) On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1): 1-36
Stacey, K., Macgregor, M. (1999) Learning the algebraic method of solving problems. Journal of Mathematical Behavior, 18(2): 149-167
Steele, D.F., Johanning, D.J. (2004) A schematic-theoretic view of problem solving and development of algebraic thinking. Educational Studies in Mathematics, 57: 65-90
Stylianou, D.A. (2011) An examination of middle school students' representation practices in mathematical problem solving through the lens of expert work: Toward an organizing scheme. Educational Studies in Mathematics, 76(3): 265-280
Subramaniam, K., Banerjee, R. (2004) Teaching arithmetic and algebraic expressions. u: Johnsen Hoines M.; Berit Fuglestad A. [ur.] Proceedings of the 28 th International Conference of the International Group for the Psychology of Mathematics Education, Bergen: PME, 3: 121-128
Subramaniam, K., Banerjee, R. (2011) The arighmetic-algebra connection: A historical-pedagogical perspective. u: Cai E.; Knuth J. [ur.] Early Algebraization, Berlin-Heidelberg: Springer, 87-107
Verschaffel, L., Greer, B., de Corte, E. (2000) Making sense of word problems. Lisse, The Netherlands: Swets and Zeitlinger
Zeljić, M. (2015) Modelling the relationships between quantities: Meaning in literal expressions. Eurasia Journal of Mathematics, 11(2): 431-442
 

O članku

jezik rada: srpski
vrsta rada: izvorni naučni članak
DOI: 10.5937/inovacije2101030D
primljen: 13.10.2020.
prihvaćen: 21.12.2020.
objavljen u SCIndeksu: 10.07.2021.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka