- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:12
- preuzimanja u poslednjih 30 dana:6
|
|
2021, vol. 76, br. 4, str. 447-456
|
Primjena procesa Markova za procjenu pouzdanosti složenog termoenergetskog sistema
Application of the Markov process to evaluate the reliability of a complex thermal power system
aUniverzitet u Banjoj Luci, Mašinski fakultet, Republika Srpska, BiH bBanja Luka, Republic of Srpska, Bosnia and Herzegovina
e-adresa: zdravko.milovanovic@unibl.rs
Sažetak
Određivanje pouzdanosti termoenergetskog postrojenja u cjelini ili njegovih pojedinih komponenti, često zahtijeva obavljanje dugotrajnih i veoma skupih ispitivanja pod posebnim režimima rada na vrlo velikom broju uzoraka ili prikupljanje zahtijevanih podataka iz eksploatacije, što je još teže, iz razloga izbora generalne matematičke metode (različiti oblici krivulja koje kvantitativno definišu pouzdanost sa različitim funkcijama gustoće otkaza i velikom zavisnosti takvih krivulja od promjene režima rada komponenti i uslova okoline). Uvođenje aproksimativnih proračuna, radi prevazilaženja navedenih problema, daje uvid u osnovne karakteristike pouzdanosti posmatranog sistema u cjelini, ali i nedovoljno egzaktne krajnje parametre, usled čitavog niza većih ili manjih aproksimacija, kao i nemogućnosti uzimanja u obzir svih postojećih uticaja (razvoj novih tehnologija, specifičnosti novonastalih poremećaja i dr.). Proračun pouzdanosti složenog sistema predstavlja samo prvu početnu fazu verifikacije kvantitativnih obilježja, odnosno samu formiranu hipotezu u koju imamo više ili manje povjerenja. Njihovo konačno prihvatanje ili odbijanje predstavlja verifikaciju pouzdanosti kroz kontrolu određenih kvantitativnih pokazatelja sistema za zadane tehničke uslove rada. Iz tih razloga se često za verifikaciju pouzdanosti u literaturi koriste i alternativni pojmovi, kao što su kontrola pouzdanosti ili testiranje hipoteze. Izrada modela pouzdanosti kroz primenu metoda simulacije za izbor najboljih parametara funkcionisanja komponenata i sistema u cjelini, u tehnološkom smislu treba potkrijepiti odgovarajućim eksperimentalnim metodama (upotrebom sakupljenih podataka i pohranjenih podataka iz prošlosti). U okviru ovog rada daje se analiza primjene procesa Markova za procjenu pouzdanosti složenog termoenergetskog sistema, s ciljem terminiranja donošenja odgovarajućih odluka o akcijama održavanja na bazi potrebnog nivoa pouzdanosti. Definisanjem optimalnih vremenskih termina zamene/opravke delova složenog termoenergetskog tehničkog sistema pre nego što dođe do njegovog otkaza ili potreba da se deluje korektivno. Takođe, ovi modeli služe i za obezbjeđenje nivoa pouzdanosti sprovođenjem adekvatnih akcija održavanja na složenim cjelinama u okviru termoenbergetskog postrojenja.
Abstract
Determining the reliability of a thermal power plant as a whole or in its individual components often requires long and very expensive tests under special operating modes on a very large number of samples or gathering the required exploitation data, which is even more difficult because of the choice of a general mathematical method (different forms of curves which quantitatively define reliability with different failure density functions and the high dependence of such curves on changes in the operating modes of components and environmental conditions). The introduction of approximate calculations, in order to overcome these problems, gives an insight into the basic reliability characteristics of the observed system as a whole, but also insufficiently exact final parameters, due to a whole series of larger or smaller approximations, as well as the inability to take into account all existing influences (development of new technologies, specifics newly developed disorders, etc.). Calculating the reliability of a complex system is only the first initial phase of verifying quantitative characteristics, that is, the hypothesis itself that we have more or less confidence in. Their final acceptance or rejection is a verification of reliability through the control of certain quantitative system indicators for the given technical conditions of operation. For these reasons, alternative terms are often used to verify reliability in the literature, such as reliability control or hypothesis testing. Designing a reliability model, through the application of simulation methods, to select the best parameters for the functioning of components and systems as a whole, in technological terms, should be supported by appropriate experimental methods (using collected data and stored data from the past). This paper provides an analysis of the application of the Markov process to assess the reliability of a complex thermal power system, with the aim of scheduling appropriate decisions on maintenance actions based on the required level of reliability. The optimum timing of replacement / repair of parts of a complex thermal power system is defined before its failure or the need to act correctively. Also, these models serve to provide a level of reliability by carrying out adequate maintenance actions on complex units within the thermal power plant.
|
|
|
Reference
|
1
|
Cox, D.R., Oakes, D. (1984) Analysis of Survival Data. London: Chapman & Hall
|
|
Crow, L.H. (1974) Reliability analysis for complex repairable systems. u: Proschan F., Crow L.H. [ur.] Reliability and Biometry, Philadelphia, Pennsylvania: SI-AM, 379-410
|
|
Fiems, D., Steyaert, B., Bruneel, H. (2003) Analysis of a discrete-time GI-G-1 queueing model subjected to bursty interruptions. Computers & Operations Research, 30(1): 139-153
|
|
Hoyland, A., Rausand, M. (1994) System Reliability Theory: Models Statistical Methods and Applications. New York: John Wiley & Sons, Inc
|
|
Lowry, G. (2002) Factors affecting the success of building management system installations. Building Services Engineering Research and Technology, 23(1): 57-66
|
|
Milošević, A. (2015) Reliability Ensuring Models TI of Complex Facilities in Thermal Power Plants. Zrenjanin, Serbia: Technical Faculty Mihajlo Pupin
|
|
Milovanović, Z. (2011) Energy and Process Plants: Thermal Power Plants -Theoretical Foundations. Banja Luka: University of Banja Luka-Faculty of Mechanical Engineering, Tom 1, (in Serbian)
|
|
Milovanović, Z. (2011) Energy and Process Plants: Thermal Power Plants: Technological Systems, Design and Construction, Exploitation and Maintenance. Banja Luka: University of Banja Luka-Faculty of Mechanical Engineering, Tom 2, (in Serbian)
|
|
Milovanović, Z. (2000) Modified method for assessment of optimal reliability of a condensational thermal power plant. Banja Luka: University of Banja Luka-Faculty of Mechanical Engineering, PhD thesis
|
|
Milovanović, Z. (2003) Optimization of Power Plant Reliability. Banja Luka: University of Banja Luka-Faculty of Mechanical Engineering, (in Serbian)
|
1
|
Papić, Lj., Milovanović, Z. (2007) Maintenance and reliability of technical systems. Prijevor: DQM, Quality and reliability in practice, Book 3, (in Serbian)
|
|
Sun, Y. (2006) Reliability Prediction of Complex Repairable Systems: An Engineering Approach. Queensland: University of Technology-Faculty of Built Environment and Engineering, Thesis submitted in total fulfilment of requirements of the degree of Doctor of Philosophy
|
|
|
|