Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 5 od 412  
Back povratak na rezultate
Implementacija 6R strategije u FDM štampi - slučaj - malogabaritna kutija elektronike
aUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM
bUniverzitet u Beogradu, Mašinski fakultet
cBombardier Aerospace, Toronto, Canada

e-adresaworcky@nanosys.ihtm.bg.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM) (MPNTR - 451-03-68/2020-14/200026)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Mašinski fakultet) (MPNTR - 451-03-68/2020-14/200105)

Ključne reči: algoritam; održivi razvoj; 6R; aditivna proizvodnja; kutija elektronike
Sažetak
U ovom radu dat je algoritam primene aditivne proizvodnje u održivom razvoju preduzeće koji obuhvata: proces pripreme proizvodnje, process realizacije proizvodnje (ili reproizvodnje), kraj procesa proizvodnje uz dodatnu obradu i postupak reciklaže optada. Implementirana je 6R strategija u realizaciji novih ili redizajnu postojećih elemenata/delova. Aditivna proizvodnja ili tehnologija FDM štampe omogućava čestu i jednostavnu modifikaciju modela na zahtev kupca, a pre ulaska modela u samu proizvodnju. Polazni materijal za izradu modela bio je polilaktična kiselina (PLA). Cilj ovog rada bio je da se prikaže postupak realizacije kutije elektronike za malogabaritni transmiter pritiska na 3D štampaču. Time se projektantu daje mogućnost da ispravi postojeće greške, modifikuje proizvod prema zahtevima krajnjih korisnika ili da isprojektuje potpuno Nov proizvod (prototip). Da bi algoritam dobio pravu potvrdu, važno je da se projektuje proizvod koji omogućava: pristupačnost, laku zamenljivost, rastavljivost, mogućnost dorade i ponovne upotrebe.
Reference
Barker, S., King, A. (2006) The development of a remanufacturing design platform model (RDPM): Applying design platform principles to extend remanufacturing practice into new industrial sectors. u: Proceedings of Life Cycle Environmental Conference, Leuven: CIRP, 399-404; (May 30th)
Brackett, D., Ashcroft, I., Hague, R. (2011) Topology optimization for additive manufacturing. u: Proceedings of the Solid Freeform Fabrication Symposium, Austin, 348-362; (August)
Cafolla, D., Ceccarelli, M., Wang, M.F., Carbone, G. (2016) 3D printing for feasibility check of mechanism design. International Journal of Mechanics and Control, 17(1): 3-12
Ciubară, A., Burlea, Ș.L., Axinte, M., Cimpoe, u R., Chicet, D.L., Manole, V., Burlea, G.L., Cimpoe, u N. (2018) 3D printer: Manufacturing of complex geometry elements. IOP Conference Series: Materials Science and Engineering, 374: 012066-012066; Iasi, Romania; IOP Publishing
Cupar, A., Pogačar, V., Stjepanovič, Z. (2015) Shape verification of fused deposition modelling 3D prints. International Journal of Information and Computer Science, 4: 1-8
Despeisse, M., Ford, S. (2015) The role of additive manufacturing in improving resource efficiency and sustainability. u: FIP International Conference on Advances in Manufacturing Management Systems, Novi Sad, Serbia, Cham: Springer, 129-136
Diegel, O., Singamneni, S., Reay, S., Withell, A. (2010) Tools for sustainable product design: Additive manufacturing. Journal of Sustainable Development, 3(3): 68-68
Eyers, D.R., Potter, A.T. (2017) Industrial additive manufacturing: A manufacturing systems perspective. Computers in Industry, 92: 208-218
Galantucci, L.M., Lavecchia, F., Percoco, G. (2009) Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Annals, 58(1): 189-192
Gehin, A., Zwolinski, P., Brissaud, D. (2008) A tool to implement sustainable end-of-life strategies in the product development phase. Journal of Cleaner Production, 16(5): 566-576
Hindo, B., Arndt, M. (2006) Everything old is new again. Business Week, 3999(1): 65-70
Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M.D., Sánchez-Nácher, L. (2014) Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 58: 23-33
Junk, S., Schröder, W. (2016) Application of sustainable design in additive manufacturing of an unmanned aerial vehicle. u: International Conference on Sustainable Design and Manufacturin. Gold Coast, QLD, AU, Cham: Springer, 375-385
King, D.L., Babasola, A., Rozario, J., Pearce, J.M. (2014) Mobile open-source solar-powered 3-D printers for distributed manufacturing in off-grid communities. Challenges in Sustainability, 2(1): 18-27
Lim, S.K., Hong, E.P., Song, Y.H., Park, B.J., Choi, H.J., Chin, I.J. (2010) Preparation and interaction characteristics of exfoliated ABS/organoclay nanocomposite. Polymer Engineering & Science, 50(3): 504-512
Matsumoto, M., Yang, S., Martinsen, K., Kainuma, Y. (2016) Trends and research challenges in remanufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1): 129-142
Maxwell, D., van der Vorst, R. (2003) Developing sustainable products and services. Journal of Cleaner Production, 11(8): 883-895
Nannan, G.U.O. (2013) Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3): 215-243
Oropallo, W., Piegl, L.A. (2016) Ten challenges in 3D printing. Engineering with Computers, 32(1): 135-148
Otto, K.N., Wood, K.L. (1998) Product evolution: A reverse engineering and redesign methodology. Research in Engineering Design, 10(4): 226-243
Peng, T., Sun, W. (2017) Energy modelling for FDM 3D printing from a life cycle perspective. International Journal of Manufacturing Research, 12(1): 83-98
Qattawi, A., Ablat, M.A. (2017) Design consideration for additive manufacturing: Fused deposition modelling. Open Journal of Applied Sciences, 7(6): 291-318
Sanchez, F.A.C., Boudaoud, H., Hoppe, S., Camargo, M. (2017) Polymer recycling in an opensource additive manufacturing context: Mechanical issues. Additive Manufacturing, 17: 87-105
Sarkis, J. (2001) Manufacturing's role in corporate environmental sustainability: Concerns for the new millennium. International Journal of Operations & Production Management, 21(5/6): 666-686
Sossou, G., Demoly, F., Montavon, G., Gomes, S. (2018) An additive manufacturing oriented design approach to mechanical assemblies. Journal of Computational Design and Engineering, 5(1): 3-18
Stephens, B., Azimi, P., El, O.Z., Ramos, T. (2013) Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment, 79: 334-339
van Ackere, A., Larsen, E.R., Morecroft, J.D. (1993) Systems thinking and business process redesign: An application to the beer game. European Management Journal, 11(4): 412-423
Wang, W.M., Zanni, C., Kobbelt, L. (2016) Improved surface quality in 3D printing by optimizing the printing direction. Computer Hraphics Forum, 35(2): 59-70
Wong, K.V., Hernandez, A. (2012) A review of additive manufacturing. International scholarly research notices, 208760
Zeltmann, S.E., Gupta, N., Tsoutsos, N.G., Maniatakos, M., Rajendran, J., Karri, R. (2016) Manufacturing and security challenges in 3D printing. JOM, 68(7): 1872-1881
Živanović, S.T., Popović, M.D., Vorkapić, N.M., Pjević, M.D., Slavković, N.R. (2020) An overview of rapid prototyping technologies using subtractive, additive and formative processes. FME Transactions, vol. 48, br. 1, str. 246-253
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/jemc2002141V
primljen: 27.10.2020.
prihvaćen: 03.12.2020.
objavljen u SCIndeksu: 16.01.2021.
Creative Commons License 4.0