Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:22
  • full-text downloads in 30 days:10

Contents

article: 7 from 168  
Back back to result list
2023, vol. 73, iss. 2, pp. 146-171
Resource management in HPLC: Unveiling a green face of pharmaceutical analysis
University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Drug Analysis, Serbia

emailjstojanovic@pharmacy.bg.ac.rs
Keywords: high-performance liquid chromatography; greenness assessment; sustainability
Abstract
High-pressure liquid chromatography (HPLC) is a technique of paramount importance in the analysis of pharmaceuticals because of its ability to separate moderately polar to less polar compounds, such as drugs and related substances.High-pressure liquid chromatography (HPLC) is a technique of paramount importance in the analysis of pharmaceuticals because of its ability to separate moderately polar to less polar compounds, such as drugs and related substances. The concept of green analytical chemistry (GAC) aims to provide more environmentally friendly and safer analytical methods in terms of reagents, energy, and waste. One of the major challenges of GAC is to find an appropriate approach to evaluate the greenness of analytical methods. An extension of GAC, called white analytical chemistry (WAC), has been introduced to consider not only environmental friendliness, but also other aspects that contribute to the sustainability of methods, such as analytical and economic or practical efficiency. HPLC methods are intrinsically not green, due to the high consumption of toxic organic solvents and the resulting generation of large amounts of toxic waste. Fortunately, there are many approaches to overcome the non-green character of HPLC methods. In this article, various modifications of the HPLC methods that increase its environmental friendliness are presented, as well as the various tools used to evaluate environmental friendliness. In addition, the new concept of white analytical chemistry is presented.
References
Abdel-Moety, E.M., Rezk, M.R., Wadie, M., Tantawy, M.A. (2021) A combined approach of green chemistry and Quality-by-Design for sustainable and robust analysis of two newly introduced pharmaceutical formulations treating benign prostate hyperplasia. Microchemical Journal, Jan 1;160:105711
Aly, A.A., Górecki, T. (2019) Green Chromatography and Related Techniques. in: Płotka-Wasylka J; Namieśnik J [ed.] Green Analytical Chemistry: Past, Present and Perspectives, Singapore: Springer Singapore, [Internet], p. 241-98
Anastas, P.T., Warner, J.C. (2000) Green Chemistry: Theory and Practice. Oxford University Press, [Internet]; Available from: https://books.google.rs/books?id=\_iMORRU42isC
Anastas, P.T. (1999) Green Chemistry and the Role of Analytical Methodology Development. Critical Reviews in Analytical Chemistry, Sep 1;29(3):167-75
André, C., Guillaume, Y.C. (2022) Development of nano Bio LC columns for the search of acetylcholinesterase molecular targets. Journal of Separation Science, Jul 1;45(13):2109-17
Beilke, M.C., Beres, M.J., Olesik, S.V. (2016) Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A 'green' technique. Journal of Chromatography A, Mar 4;1436:84-90
Byrne, F.P., Jin, S., Paggiola, G.S., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., Robert, M.C., Sherwood, J. (2016) Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Processes, May 23;4(1):7
Bystrzanowska, M., Orłowski, A., Tobiszewski, M. (2019) Comparative Greenness Evaluation. in: Płotka-Wasylka J; Namieśnik J [ed.] Green Analytical Chemistry: Past, Present and Perspectives, Singapore; Singapore: Springer, [Internet]; p. 353-78
Chen, D., Jiang, S., Chen, Y., Hu, Y. (2004) HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-beta-cyclodextrin as mobile phase additive. Journal of pharmaceutical and biomedical analysis, Jan 27;34(1):239-45
D'Atri, V., Fekete, S., Clarke, A., Veuthey, J.L., Guillarme, D. (2019) Recent advances in chromatography for pharmaceutical analysis. Anal Chem, Jan 2;91(1):210-39
Djajić, N., Krmar, J., Rmandić, M., Rašević, M., Otašević, B., Zečević, M., Malenović, A., Protić, A. (2021) Modified aqueous mobile phases: A way to improve retention behavior of active pharmaceutical compounds and their impurities in liquid chromatography. Journal of Chromatography Open, Dec 1;2:100023
dos Santos, P.A., Girón, A.J., Admasu, E., Sandra, P. (2010) Green hydrophilic interaction chromatography using ethanol-water-carbon dioxide mixtures. Journal of Separation Science, Mar 1;33(6-7):834-7
El-Shaheny, R.N., El-Maghrabey, M.H., Belal, F.F. (2015) Micellar Liquid Chromatography from Green Analysis Perspective. Open Chemistry, cited 2023 Mar 8;13(1)
Fekete, S., Schappler, J., Veuthey, J.L., Guillarme, D. (2014) Current and future trends in UHPLC. UHPLC are we 10 years its commer introd, Dec 1;63:2-13
Ferey, L., Raimbault, A., Rivals, I., Gaudin, K. (2018) UHPLC method for multiproduct pharmaceutical analysis by Quality-by-Design. Journal of Pharmaceutical and Biomedical Analysis, Jan 30;148:361-8
Foster, S.W., Xie, X., Pham, M., Peaden, P.A., Patil, L.M., Tolley, L.T., Farnsworth, P.B., Tolley, H., Lee, M.L., Grinias, J.P. (2020) Portable capillary liquid chromatography for pharmaceutical and illicit drug analysis. Journal of Separation Science, May 1;43(9-10):1623-7
Fritz, R., Ruth, W., Kragl, U. (2009) Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, Jul 30;23(14):2139-45
Funari, C.S., Carneiro, R.L., Khandagale, M.M., Cavalheiro, A.J., Hilder, E.F. (2015) Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. Journal of Separation Science, May 1;38(9):1458-65
Gaber, Y., Törnvall, U., Kumar, M.A., Ali, A.M., Hatti-Kaul, R. (2011) HPLC-EAT (Environmental Assessment Tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chemistry, 13(8): 2021-2021
Gałuszka, A., Migaszewski, Z.M., Konieczka, P., Namieśnik, J. (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, Jul 1;37:61-72
Gałuszka, A., Migaszewski, Z., Namieśnik, J. (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry, Oct 1;50:78-84
González-Ruiz, V., León, A.G., Olives, A.I., Martín, A.M., Menéndez, C.J. (2011) Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives. Green Chem, 13(1): 115-126
Guichard, N., Fekete, S., Guillarme, D., Bonnabry, P., Fleury-Souverain, S. (2019) Computer-assisted UHPLC-MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy. Journal of Pharmaceutical and Biomedical Analysis, Feb 5;164:395-401
Gumustas, M., Zalewski, P., Ozkan, S.A., Uslu, B. (2019) The history of the core-shell particles and applications in active pharmaceutical ingredients via liquid chromatography. Chromatographia, Jan 1;82(1):17-48
Hutchinson, J.P., Remenyi, T., Nesterenko, P., Farrell, W., Groeber, E., Szucs, R., Dicinoski, G., Haddad, P.R. (2012) Investigation of polar organic solvents compatible with Corona Charged Aerosol Detection and their use for the determination of sugars by hydrophilic interaction liquid chromatography. Analytica Chimica Acta, 750th Anniv Vol., Oct 31;750:199-206
Ibrahim, A.E., Hashem, H., Elhenawee, M., Saleh, H. (2018) Comparison between core-shell and totally porous particle stationary phases for fast and green LC determination of five hepatitis-C antiviral drugs. Journal of Separation Science, Apr 1;41(8):1734-42
Jerkovich, A.D., Vivilecchia, R.V. (2007) Development of Fast HPLC Methods. in: HPLC for Pharmaceutical Scientists, [Internet]; [cited 2023 Mar 6], p. 763-810
Kaljurand, M., Koel, M. (2011) Recent Advancements on Greening Analytical Separation. Critical Reviews in Analytical Chemistry, Jan 31;41(1):2-20
Keith, L.H., Gron, L.U., Young, J.L. (2007) Green Analytical Methodologies. Chemical Reviews, Jun 1;107(6):2695-708
Kimoto, M., Sakane, T., Katsumi, H., Yamamoto, A. (2021) Quick and Simultaneous Analysis of Dissolved Active Pharmaceutical Ingredients and Formulation Excipients from the Dissolution Test Utilizing UHPLC and Charged Aerosol Detector. AAPS PharmSciTech, Nov 1;22(8):262
Koel, M. (2016) Do we need Green Analytical Chemistry?. Green Chemistry, 18(4): 923-931
Lam, S.C., Coates, L.J., Hemida, M., Gupta, V., Haddad, P.R., Macka, M., Paull, B. (2020) Miniature and fully portable gradient capillary liquid chromatograph. Analytica Chimica Acta, Mar 8;1101:199-210
Lanckmans, K., Clinckers, R., van Eeckhaut, A., Sarre, S., Smolders, I., Michotte, Y. (2006) Use of microbore LC-MS/MS for the quantification of oxcarbazepine and its active metabolite in rat brain microdialysis samples. Journal of Chromatography B, Feb 2;831(1):205-12
Lobrutto, R., Kazakevich, Y. (2007) Reversed-Phase HPLC. in: HPLC for Pharmaceutical Scientists, [Internet]; cited 2023 Mar 6, p. 139-239
Maljurić, N., Otašević, B., Golubović, J., Krmar, J., Zečević, M., Protić, A. (2020) A new strategy for development of eco-friendly RP-HPLC method using Corona Charged Aerosol Detector and its application for simultaneous analysis of risperidone and its related impurities. Microchem J, Mar 1;153:104394
Maljurić, N., Golubović, J., Otašević, B., Zečević, M., Protić, A. (2018) Quantitative structure: Retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases. Anal Bioanal Chem, Apr 1;410(10):2533-50
Marcinkowska, R., Namieśnik, J., Tobiszewski, M. (2019) Green and equitable analytical chemistry. Green Anal Chem: New Bus Models Ethics Legis Econ, Oct 1;19:19-23
Marks, D.W. (1997) Reversed-phase high-performance liquid chromatographic separation of LY309887 (thienyl-5,10-dideazatetrahydrofolate) stereoisomers using beta-cyclodextrin as a mobile phase additive. Journal of chromatographic science, May 1;35(5):201-5
Mohamed, H.M. (2015) Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. TrAC Trends Anal Chem, Mar 1;66:176-92
Namiesnik, J. (1999) Pro-ecological education. Environmental Science and Pollution Research, Dec 1;6(4):243-4
Nowak, P.M., Kościelniak, P. (2019) What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Analytical Chemistry, Aug 20;91(16):10343-52
Nowak, P.M., Wietecha-Posłuszny, R., Pawliszyn, J. (2021) White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC Trends in Analytical Chemistry, May 1;138:116223
Pena-Pereira, F., Wojnowski, W., Tobiszewski, M. (2020) AGREE: Analytical GREEnness Metric Approach and Software. Analytical Chemistry, Jul 21;92(14):10076-82
Pena-Pereira, F., Kloskowski, A., Namieśnik, J. (2015) Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a generation of eco-friendly alternatives. Green Chemistry, 17(7): 3687-3705
Pichini, S., Mannocchi, G., Gottardi, M., Pérez-Acevedo, A.P., Poyatos, L., Papaseit, E., Pérez-Mañá, C., Farré, M., Pacifici, R., Busardò, F.P. (2020) Fast and sensitive UHPLC-MS/MS analysis of cannabinoids and their acid precursors in pharmaceutical preparations of medical cannabis and their metabolites in conventional and non-conventional biological matrices of treated individual. Talanta, Mar 1;209:120537
Płotka, J., Tobiszewski, M., Sulej, A.M., Kupska, M., Górecki, T., Namieśnik, J. (2013) Green chromatography. Journal of Chromatography A, Sep 13;1307:1-20
Płotka-Wasylka, J. (2018) A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, May 1;181:204-9
Płotka-Wasylka, J., Wojnowski, W. (2021) Complementary green analytical procedure index (ComplexGAPI) and software. Green Chemistry, 23(21): 8657-8665
Rahavendran, S.V., Vekich, S., Skor, H., Batugo, M., Nguyen, L., Shetty, B., Shen, Z. (2012) Discovery pharmacokinetic studies in mice using serial microsampling, dried blood spots and microbore LC-MS/MS. Bioanalysis, May 1;4(9):1077-95
Randall, K.L., Argoti, D., Paonessa, J.D., Ding, Y., Oaks, Z., Zhang, Y., Vouros, P. (2010) An improved liquid chromatography-tandem mass spectrometry method for the quantification of 4-aminobiphenyl DNA adducts in urinary bladder cells and tissues. Journal of Chromatography A, Jun 18;1217(25):4135-43
Rashed, N.S., Zayed, S., Abdelazeem, A., Fouad, F. (2020) Development and validation of a green HPLC method for the analysis of clorsulon, albendazole, triclabendazole and ivermectin using monolithic column: Assessment of the greenness of the proposed method. Microchemical Journal, Sep 1;157:105069
Roy, C.E., Kauss, T., Prevot, S., Barthelemy, P., Gaudin, K. (2015) Analysis of fatty acid samples by hydrophilic interaction liquid chromatography and charged aerosol detector. Journal of Chromatography A, Feb 27;1383:121-6
Schmidt, A.H., Molnár, I. (2013) Using an innovative Quality-by-Design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, May 5;78-79:65-74
Shaaban, H., Górecki, T. (2012) Fused core particles as an alternative to fully porous sub-2 mm particles in pharmaceutical analysis using coupled columns at elevated temperature. Analytical Methods, 4(9):2735-43
Sheng, H., Kim, D., Chin, A.S., Zhao, Y., Liu, Y., Katwaru, R., Bateman, K.P., Abend, A., Wuelfing, W. (2020) Development of an automated and high throughput UHPLC/MS-based workflow for cleaning verification of potent compounds in the pharmaceutical manufacturing environment. Journal of Pharmaceutical and Biomedical Analysis, Sep 5;188:113401
Sinnaeve, B.A., Decaestecker, T.N., Claerhout, I.J., Kestelyn, P., Remon, J.P., van Bocxlaer, J.F. (2003) Confirmation of ofloxacin precipitation in corneal deposits by microbore liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography B, Feb 25;785(1):193-6
Swartz, M. (2010) HPLC detectors: A brief review. Journal of Liquid Chromatography & Related Technologies, Jul 13;33(9-12):1130-50
Tobiszewski, M. (2016) Metrics for green analytical chemistry. Analytical Methods, 8(15): 2993-2999
Tobiszewski, M., Namieśnik, J. (2015) Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards. Ecotoxicology and Environmental Safety, Oct 1;120:169-73
Waterlot, C., Ghinet, A., Lipka, E. (2018) Core-shell particles: A way to greening liquid chromatography in environmental applications. Current Chromatography, 5(2):78-90
Welch, C.J., Wu, N., Biba, M., Hartman, R., Brkovic, T., Gong, X., Helmy, R., Schafer, W., Cuff, J., Pirzada, Z. (2010) Greening analytical chromatography. Green Anal Chem, Jul 1;29(7):667-80
Wong, N., Cudny, B., Aziz, O., Marzouk, N., Sheehan, S.R. (1988) Microbore Liquid Chromatography for Pediatric and Neonatal Therapeutic Drug Monitoring and Toxicology: Clinical Analysis of Chloramphenicol. Journal of Liquid Chromatography, Apr 1;11(5):1143-58
Yabré, M., Ferey, L., Somé, I.T., Gaudin, K. (2018) Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules, 23(5): 1065-1065
Yehia, A.M., Mohamed, H.M. (2016) Green approach using monolithic column for simultaneous determination of coformulated drugs. Journal of Separation Science, Jun 1;39(11):2114-22
Yu, H., Straubinger, R.M., Cao, J., Wang, H., Qu, J. (2008) Ultra-sensitive quantification of paclitaxel using selective solid-phase extraction in conjunction with reversed-phase capillary liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, Nov 14;1210(2):160-7
Žáková, P., Sklenářová, H., Nováková, L., Hájková, R., Matysová, L., Solich, P. (2009) Application of monolithic columns in pharmaceutical analysis: Determination of indomethacin and its degradation products. Journal of Separation Science, Aug 1;32:2786-92
 

About

article language: English
document type: Review Paper
DOI: 10.5937/arhfarm73-43479
published in SCIndeks: 06/05/2023
peer review method: single-blind
Creative Commons License 4.0

Related records

No related records