Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:13
  • preuzimanja u poslednjih 30 dana:12

Sadržaj

članak: 10 od 100  
Back povratak na rezultate
2018, vol. 54, br. 1, str. 1-24
Pregled hemijskog luženja uglja u kiselom i alkalnom rastvoru
aIndian Institute of Technology (IIT) Kharagpur, Department of Chemical Engineering, West Bengal, India
bUniversity of Kwazulu-Natal (UKZN), Howard College, Chemical Engineering, School of Engineering, Kwazulu-Natal, South Africa

e-adresaskbehera@che.iitkgp.ac.in
Ključne reči: niskokalorični ugalj; mineralna materija; oplemenjivanje; hemijski metod; demineralizacija
Sažetak
Niskokalorični ugljevi mogu se naći u izobilju u nekoliko regiona na svetu. On ima značajnu ulogu u energetskom sektoru i kao hemijska sirovina u industriji. Zalihe kamenog uglja postupno se iscrpljuju, a rudarske operacije u dubljim ugljenim slojevima se odvijaju sa velikim poteškoćama, a i sami troškovi eksploatacije istraživanja su tako visoki, što bitno utiče na ekonomiju postrojenja. Stoga, niskokalorični ugalj može se koristiti kao alternativni izvor energije da bi se ovi problemi sveli na minimum. Niskokalorični ugljevi uglavnom sadrže veliki procenat minerala i povećanu vlažnost, što značajno utiče na njihovu potrošnju, uključujući postupke pirolize, gasifikacije i likvefakcije i sagorevanja. Suštinsko razumevanje postupka tretiranja uglja, za efikasno uklanjanje mineralnih materija i za poboljšanje osobina uglja tehnikama oplemenjivanja, polazna je osnova za razvoj naprednih tehnologija. Ovaj članak pruža sveobuhvatni pregled različitih postupaka demineralizacije uglja putem hemijske tehnike oplemenjivanja. Tokom ovog istraživanja se došlo do zaključka da je stepen demineralizacije veći hemijskim postupcima oplemenjivanja u poređenju sa fizičkim oplemenjivanjem. Ovo iz razloga što hemijski reagensi napadaju unutrašnju strukturu uglja, a što dovodi do uklanjanja neorganskih materijala i fino dispergovanih minerala iz strukture uglja. Hemijskim metodama izdvajaju se svi tipovi minerala iz uglja. Medjutim, separacija minerala fizičkim metodama zavisi od osobina minerala. Hemijsko oplemenjivanje luženjem je pogodan metod za redukovanje sadržaja i organskih i neorganskih konstituenata iz uglja. Hemijski reagensi difunduju u unutrašnju strukturu uglja, krećući se kroz pore i pritom razlažu minerale. Tokom ispitivanja, došlo se do zaključka da hemijsko čišćenje niskokaloričnog uglja predstavlja efikasnu tehniku za smanjenje sadržaja minerala na minimum, što omogućava njegovo obogaćivanje do uglja boljeg kvaliteta.
Reference
Adeleke, A.A., Ibitoye, S.A., Afonja, A.A. (2013) Multistage caustic leaching desulphurization of a high sulphur coal. Petroleum & Coal, 112-117; 55
Akers, D., Dospoy, R. (1994) Role of coal cleaning in control of air toxics. Fuel Processing Technology, 39(1-3): 73-86
Baláž, P., LaCount, R., Kern, D., Turčániová, L. (2001) Chemical treatment of coal by grinding and aqueous caustic leaching. Fuel, 80(5): 665-671
Baruah, B.P., Khare, P. (2007) Desulfurization of Oxidized Indian Coals with Solvent Extraction and Alkali Treatment. Energy & Fuels, 21(4): 2156-2164
Baruah, B.P., Saikia, B.K., Kotoky, P., Rao, P. G. (2006) Aqueous Leaching on High Sulfur Sub-bituminous Coals, in Assam, India. Energy & Fuels, 20(4): 1550-1555
Behera, S.K., Chakraborty, S., Meikap, B.C. (2017) Chemical demineralization of high ash Indian coal by using alkali and acid solutions. Fuel, 196: 102-109
Behera, S.K., Chakraborty, S., Meikap, B.C. (2017) Upgradation of Low Grade Coal to High Quality Coal by Chemical Beneficiation Technique. u: Volume 1: Boilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balanc, ASME International, str. V001T04A006
Behera, S.K., Meena, H., Chakraborty, S., Meikap, B.C. (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4): 621-629
Behera, S.K., Chakraborty, S., Meikap, B.C. (2016) Demineralization Study of Low Grade Indian Coal by Aqueous Caustic Leaching. u: Regupathi, I; Shetty K, Vidya; Thanabalan, Murugesan [ur.] Recent Advances in Chemical Engineering, Singapore: Springer Nature, str. 99-108
Bolat, E., Saǧlam, S., Pişkin, S. (1998) Chemical demineralization of a Turkish high ash bituminous coal. Fuel Processing Technology, 57(2): 93-99
Bryers, R.W. (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science, 22(1): 29-120
Carlson, C.L., Adriano, D.C. (1993) Environmental impacts of coal combustion residues. Journal of Environment Quality, 22(2): 227
Choudhury, R., Bhaktavatsalam, A.K. (1997) Beneficiation of Indian coal by chemical techniques. Energy Conversion and Management, 38(2): 173-178
Chriswell, C.D., Shah, N.D., Kaushik, S.M., Markuszewski, R. (1989) Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization. Fuel Processing Technology, 22(1): 25-39
Chriswell, C.D., Shah, N.D., Markuszewski, R. (1991) Countercurrent Washing of Pittsburgh No. 8 Coal after Leaching with Molten Mixtures of Sodium and Potassium Hydroxides. Separation Science and Technology, 26(7): 961-975
Coal Directory of India (2010) Coal controller's organization. Kolkata
Çulfaz, M., Ahmed, M., Gürkan, S. (1996) Removal of mineral matter and sulfur from lignites by alkali treatment. Fuel Processing Technology, 47(2): 99-109
Dash, P.S., Lingam, R.K., Santosh, K.S., Suresh, A., Banerjee, P.K., Ganguly, S. (2015) Effect of elevated temperature and pressure on the leaching characteristics of Indian coals. Fuel, 140: 302-308
Dash, P.S., Sriramoju, S.K., Kargupta, K., Banerjee, P.K., Ganguly, S. (2015) Characterization of Chemically Beneficiated Indian Coals. International Journal of Coal Preparation and Utilization, 35(5): 257-272
Dash, P.S., Kumar, S. S., Banerjee, P.K., Ganguly, S. (2013) Chemical Leaching of High-Ash Indian Coals for Production of Low-Ash Clean Coal. Mineral Processing and Extractive Metallurgy Review, 34(4): 223-239
Diehl, S.F., Goldhaber, M.B., Koenig, A.E., Lowers, H.A., Ruppert, L.F. (2012) Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94: 238-249
Doymaz, I., Gulen, J., Piskin, S., Toprak, S. (2007) The Effect of Aqueous Caustic and Various Acid Treatments on the Removal of Mineral Matter in Asphaltite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(4): 337-346
Duz, M. Z., Saydut, A., Erdogan, S., Hamamci, C. (2009) Removal of Sulfur and Ash from Coal Using Molten Caustic Leaching, a Case Study from Hazro Fields, Turkey. Energy Exploration & Exploitation, 27(6): 391-400
Duz, M.Z., Hamamci, C., Erdoğan, S., Saydut, A., Merdivan, M. (2008) Effect of Molten Caustic Leaching on Demineralization and Desulfurization of Asphaltite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(17): 1637-1644
Finkelman, R.B., Orem, W., Castranova, V., Tatu, C.A., Belkin, H.E., Zheng, B., Lerch, H.E., Maharaj, S.V., Bates, A.L. (2002) Health impacts of coal and coal use: possible solutions. International Journal of Coal Geology, 50(1-4): 425-443
Goto, K., Yogo, K., Higashii, T. (2013) A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Applied Energy, 111: 710-720
Grigore, M., Sakurovs, R., French, D., Sahajwalla, V. (2008) Mineral matter in coals and their reactions during coking. International Journal of Coal Geology, 76(4): 301-308
Gulen, J., Doymaz, I., Piskin, S., Ongen, S. (2013) The Effects of Temperature and Mineral Acids on the Demineralization Degree of Nallihan Lignite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(3): 202-208
Hamamci, C., Kahraman, F., Düz, M. (1997) Desulfurization of southeastern Anatolian asphaltites by the Meyers method. Fuel Processing Technology, 50(2-3): 171-177
Huggins, F.E. (2002) Overview of analytical methods for inorganic constituents in coal. International Journal of Coal Geology, 50(1-4): 169-214
IEA (2012) Coal information. International Energy Agency - Coal Industry Advisory Board, https//www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
Ishaq, M., Ahmad, I., Shakirulla, M., Bahader, A., Taj, N. (2002) Characterization of Khushab coal. Journal of the Chemical Society of Pakistan, 240-245; 24
Jankowski, J., Ward, C., French, D., Groves, S. (2006) Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel, 85(2): 243-256
Kara, H., Ceylan, R. (1988) Removal of sulphur from four Central Anatolian lignites by NaOH. Fuel, 67(2): 170-172
Karaca, H., Ceylan, K. (1997) Chemical cleaning of Turkish lignites by leaching with aqueous hydrogen peroxide. Fuel Processing Technology, 50(1): 19-33
Kelly, E.G., Spottiswood, D.J. (1989) The theory of electrostatic separations: A review Part I. Fundamentals. Minerals Engineering, 2(1): 33-46
Kizgut, S., Baris, K., Yilmaz, S. (2006) Effect of chemical demineralization on thermal behavior of bituminous coals. Journal of Thermal Analysis and Calorimetry, 86(2): 483-488
Kolker, A. (2012) Minor element distribution in iron disulfides in coal: A geochemical review. International Journal of Coal Geology, 94: 32-43
Kumar, M., Gupta, R.C. (1997) Demineralization Study of Indian Assam Coking Coal by Sodium Hydroxide Leaching. Energy Sources, 19(7): 723-730
Kumar, R., Hari, S. (2000) Removal of Ash from Indian Assam Coking Coal Using Sodium Hydroxide and Acid Solutions. Energy Sources, 22(2): 187-196
Lazo, D.E., Dyer, L.G., Alorro, R.D. (2017) Silicate, phosphate and carbonate mineral dissolution behaviour in the presence of organic acids: A review. Minerals Engineering, 100: 115-123
Lee, S.H., Shon, E.K. (1997) Effect of molten caustic leaching on the combustion characteristics of anthracite. Fuel, 76(3): 241-246
Liu, K., Yang, J., Jia, J., Wang, Y. (2008) Desulphurization of coal via low temperature atmospheric alkaline oxidation. Chemosphere, 71(1): 183-188
Manoj, B. (2012) Chemical demineralization of high volatile Indian bituminous coal by carboxylic acid and characterization of the products by SEM/EDS. Journal of Environmental Research And Development, 653-659; 6
Meij, R. (1994) Trace element behavior in coal-fired power plants. Fuel Processing Technology, 39(1-3): 199-217
Meshram, P., Purohit, B.K., Sinha, M.K., Sahu, S.K., Pandey, B.D. (2015) Demineralization of low grade coal - A review. Renewable and Sustainable Energy Reviews, 41: 745-761
Mukherjee, S., Borthakur, P. (2001) Chemical demineralization/desulphurization of high sulphur coal using sodium hydroxide and acid solutions. Fuel, 80(14): 2037-2040
Mukherjee, S., Mahiuddin, S., Borthakur, P.C. (2001) Demineralization and Desulfurization of Subbituminous Coal with Hydrogen Peroxide. Energy & Fuels, 15(6): 1418-1424
Mukherjee, S., Borthakur, P.C. (2003) Effect of leaching high sulphur subbituminous coal by potassium hydroxide and acid on removal of mineral matter and sulphur☆. Fuel, 82(7): 783-788
Mukherjee, S., Borthakur, P.C. (2004) Demineralization of subbituminous high sulphur coal using mineral acids. Fuel Processing Technology, 85(2-3): 157-164
Nabeel, A., Khan, T.A., Sharma, D.K. (2009) Studies on the Production of Ultra-clean Coal by Alkali-acid Leaching of Low-grade Coals. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(7): 594-601
Önal, Y., Ceylan, K. (1995) Effects of treatments on the mineral matter and acidic functional group contents of Turkish lignites. Fuel, 74(7): 972-977
Paul, M., Seferinoğlu, M., Ayçık, G.A., Sandström, Å., Smith, M.L., Paul, J. (2006) Acid leaching of ash and coal: Time dependence and trace element occurrences. International Journal of Mineral Processing, 79(1): 27-41
Querol, X., Fernández-Turiel, J., López-Soler, A. (1995) Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74(3): 331-343
Ratanakandilok, S., Ngamprasertsith, S., Prasassarakich, P. (2001) Coal desulfurization with methanol/water and methanol/KOH. Fuel, 80(13): 1937-1942
Rodríguez, R.A., Jul, C.C., Gómez-Limón, D. (1996) The influence of process parameters on coal desulfurization by nitric leaching. Fuel, 75(5): 606-612
Rubiera, F., Arenillas, A., Arias, B., Pis, J.J., Suárez-Ruiz, I., Steel, K.M., Patrick, J.W. (2003) Combustion behaviour of ultra clean coal obtained by chemical demineralisation. Fuel, 82(15-17): 2145-2151
Ryberg, M.W., Owsianiak, M., Laurent, A., Hauschild, M.Z. (2015) Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?. Energy & Environmental Science, 8(8): 2435-2447
Saydut, A., Duz, M.Z., Erdogan, S., Tonbul, Y., Hamamci, C. (2011) Chemical Leaching on Sulfur and Mineral Matter Removal from Asphaltite (Harbul, SE Anatolia, Turkey). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(5): 383-391
Sharma, D.K., Gihar, S. (1991) Chemical cleaning of low grade coals through alkali-acid leaching employing mild conditions under ambient pressure. Fuel, 70(5): 663-665
Smoot, L.D. (1993) Fundamentals of Coal Combustion for clean and Efficient Use. Amsterdam: Elsevier, The Netherlands
Sönmez, Ö., Giray, E. (2001) The influence of process parameters on desulfurization of two Turkish lignites by selective oxidation. Fuel Processing Technology, 70(3): 159-169
Sriramoju, S.K., Suresh, A., Lingam, R.K., Dash, P.S. (2017) Mechanism of a Coal Chemical-Leaching Process and Recovery of Spent Chemicals: A Pilot-Scale Study. International Journal of Coal Preparation and Utilization, 37(6): 293-302
Steel, K.M., Patrick, J.W. (2001) The production of ultra clean coal by chemical demineralisation. Fuel, 80(14): 2019-2023
Steel, K.M., Besida, J., o`Donnell Thomas, A., Wood, D.G. (2001) Production of Ultra Clean Coal. Fuel Processing Technology, 70(3): 171-192
Steel, K.M., Patrick, J.W. (2003) The production of ultra clean coal by sequential leaching with HF followed by HNO3. Fuel, 82(15-17): 1917-1920
Swaine, D.J. (1990) Trace elements in coal. London: Butterworths
Vasilakos, N.P., Clinton, C.S. (1984) Chemical beneficiation of coal with aqueous hydrogen peroxide/sulphuric acid solutions. Fuel, 63(11): 1561-1563
Vassilev, S.V., Vassileva, C.G. (2009) A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 1. Chemical and mineral classification systems. Fuel, 88(2): 235-245
Vassilev, S.V., Kitano, K., Vassileva, C.G. (1996) Some relationships between coal rank and chemical and mineral composition. Fuel, 75(13): 1537-1542
Vassilev, S.V., Vassileva, C.G. (1996) Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Processing Technology, 48(2): 85-106
Vassilev, S.V., Vassileva, C.G., Baxter, D., Andersen, L.K. (2009) A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 2. Potential applications of the classification systems. Fuel, 88(2): 246-254
Wahab, A., Nawaz, S., Shahzad, K., Akhtar, J., Kanwal, S., Munir, S., Sheikh, N. (2015) Desulfurization and Demineralization of Lakhra Coal by Molten Caustic Leaching. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(11): 1219-1223
Wang, J., Zhang, Z., Kobayashi, Y., Tomita, A. (1996) Chemistry of Ca(OH) 2 Leaching on Mineral Matter Removal from Coal. Energy & Fuels, 10(2): 386-391
Wang, J., Tomita, A. (1998) Removal of mineral matter from some Australian coals by Ca(OH)2/HCl leaching. Fuel, 77(15): 1747-1753
Wang, J., Tomita, A., Taylor, G.H., Fitz, G.J.D. (1997) Microscopic observation of coal demineralization by Ca(OH)2 leaching. Fuel, 76(5): 369-374
Wang, Z.Y., Ohtsuka, Y., Tomita, A. (1986) Removal of mineral matter from coal by alkali treatment. Fuel Processing Technology, 13(3): 279-289
Ward, C.R., French, D., Jankowski, J., Dubikova, M., Li, Z., Riley, K.W. (2009) Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. International Journal of Coal Geology, 80(3-4): 224-236
Waugh, A.B., Bowling, K.McG. (1984) Removal of mineral matter from bituminous coals by aqueous chemical leaching. Fuel Processing Technology, 9(3): 217-233
Wijaya, N., Zhang, L. (2011) A Critical Review of Coal Demineralization and Its Implication on Understanding the Speciation of Organically Bound Metals and Submicrometer Mineral Grains in Coal. Energy & Fuels, 25(1): 1-16
Wijaya, N., Choo, T.K., Zhang, L. (2011) Generation of ultra-clean coal from Victorian brown coal - Sequential and single leaching at room temperature to elucidate the elution of individual inorganic elements. Fuel Processing Technology, 92(11): 2127-2137
Wu, Z., Steel, K.M. (2007) Demineralization of a UK bituminous coal using HF and ferric ions. Fuel, 86(14): 2194-2200
Yamauchi, Y., Akiyama, K. (2013) Innovative Zero-emission Coal Gasification Power Generation Project. Energy Procedia, 37: 6579-6586
Yang, R., Das, S., Tsai, B. (1985) Coal demineralization using sodium hydroxide and acid solutions. Fuel, 64(6): 735-742
Yu, D., Xu, M., Zhang, L., Yao, H., Wang, Q., Ninomiya, Y. (2007) Computer-Controlled Scanning Electron Microscopy (CCSEM) Investigation on the Heterogeneous Nature of Mineral Matter in Six Typical Chinese Coals †. Energy & Fuels, 21(2): 468-476
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/JMMA1801001B
objavljen u SCIndeksu: 10.01.2019.
Creative Commons License 4.0