Akcije

Journal of Applied Engineering Science
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 6 od 213  
Back povratak na rezultate
2020, vol. 18, br. 4, str. 631-636
An experimental test of the effect of cup diameter on the power performance of novel design HC-type VAWT
(naslov ne postoji na srpskom)
aState University of Malang, Faculty of Engineering, Department of Mechanical Engineering, East Java, Indonesia
bState University of Malang, Faculty of Mathematics and Natural Sciences, Department of Physics, East Java, Indonesia
cUniversity of Jember, Faculty of Engineering, Department of Mechanical Engineering, East Java, Indonesia
dState University of Malang, Faculty of Engineering, Department of Electrical Engineering, East Java, Indonesia

e-adresaalfianmizar@um.ac.id
Ključne reči: coefficient of power; darrieus HC-rotor; darrieus turbine; performance; savonious turbine; wind turbine
Sažetak
(ne postoji na srpskom)
Wind energy is one solution to overcome the energy problem in Indonesia. This study aimed to analyze the effect of cup diameter on the power performance of an HC-type vertical axis wind turbine (VAWT). The wind turbine used a combination of an H-type Darrieus wind turbine and a type-C rotor VAWT. The Darrieus HC-rotor wind turbine blade has a height H = 800 mm and diameter D = 800 mm with C-rotor variations on the tip with diameters of 76,2, 101,6, and 152,4 mm. The wind tunnel used an electric motor with a power of 1 HP (740 Watt) and 1400 rpm connected to a fan. The variation of wind speed was set to 2, 3, 4, 5, 6 and 7 m/s. The results showed that: (a) the highest rotation speedal speed was achieved by the HC-rotor diameter of 76,2 on 105 rpm with a wind speed of 7 m/s; (b) the highest value of the coefficient of power (Cp) is achieved by the HC-rotor diameter of 101,6mm (c) the highest value of the coefficient of torque (Ct) is achieved with the HC-rotor diameter of 152,4mm (d) the Darrieus HC-rotor wind turbine is suitable to be used in tropical regions that have low wind speeds. This result provides important information about the effect of the C rotor radius on the performance of HC-rotor Darrieus wind turbine blade vertical axis.
Reference
Adaramola, M. (2014) Wind turbine technology: Principles and design. Hoboken: Taylor and Francis
Akwa, J.V., Vielmo, H.A., Petry, A.P. (2012) A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, 16(5): 3054-3064
Alemán-Nava, G.S., Casiano-Flores, V.H., Cárdenas-Chávez, D.L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J., Dallemand, J.F., Parra, R. (2014) Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32: 140-153
Ali, M.H. (2013) Experimental Comparison Study for Savonius Wind Turbine of Two and Three Blades at Low Wind Speed. International Journal of Modern Engineering Research, Vol. 3; issue 5, 2978-2986
Erwin, E., Surjosatyo, A., Sulistyo, N.J., Meurahindra, M.T., Soemardi, T. (2018) The effect of hybrid savonius and darrieus turbine on the change of wake recovery and improvement of wind energy harvesting. Journal of Applied Engineering Science, vol. 16, br. 3, str. 416-423
Ferreira, C.S., van Kuik, G., van Bussel, G., Scarano, F. (2009) Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids, vol. 46, 97-108
Fox, R.W., Mcdonald, A.T., Pritchard, P.J., Leylegian, J.C. (2012) Fluid mechanics. Hoboken: John Wiley
Hasan, M.H., Mahlia, T.M.I., Nur, H. (2012) A review on energy scenario and sustainable energy in Indonesia. Renewable and Sustainable Energy Reviews, 16(4): 2316-2328
Johnson, G.L. (1985) Wind energy systems. Englewood Cliffs: Prentice-Hall
Kusiak, A., Zheng, H., Song, Z. (2008) On-line monitoring of power curves. Renewable Energy, vol.34, 1487-1493
Mikhail, A. (1981) Wind power for developing nations. California: Solar Energy Research Institute
Rezaeiha, A., Kalkman, I., Blocken, B. (2017) CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy, 107: 373-385
Serway, R.A., Jewett, J.W., Peroomian, V. (2014) Physics for scientists and engineers. Boston: Cengage Brooks/Cole
Soeripno, M.S., Ibrochim, M., Widodo, T.S. (2009) Analisa potensienergiangin dan estimasienergi output turbinangin di Lebak Banten. Jurnal Teknologi Dirgantara, vol. 7, 51-59, from http://jurnal.lapan.go.id/index.php/jurnal_tekgan/article/view/181/157, accessed on 27 April 2019
Tescione, G., Ragni, D., He, C., Simão, F.C.J., van Bussel, G.J.W. (2014) Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, 70: 47-61
Tjiu, W., Marnoto, T., Mat, S., Ruslan, M.H., Sopian, K. (2015) Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy, 75: 50-67
Toja-Silva, F., Colmenar-Santos, A., Castro-Gil, M. (2013) Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 24: 364-378
Tummala, A., Velamati, R.K., Sinha, D.K., Indraja, V., Krishna, V.H. (2016) A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351-1371
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/jaes0-25010
primljen: 30.01.2020.
prihvaćen: 21.08.2020.
objavljen u SCIndeksu: 25.12.2020.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci