Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:44
  • preuzimanja u poslednjih 30 dana:17

Sadržaj

članak: 5 od 25  
Back povratak na rezultate
2018, vol. 43, br. 4, str. 29-56
Dizajn, klasifikacija, perspektiva i moguća aplikacija dronova u poljoprivredu Srbije
Univerzitet u Beogradu, Poljoprivredni fakultet, Odsek/institut za poljoprivrednu tehniku

e-adresaomico@agrif.bg.ac.rs
Projekat:
Unapređenje biotehnoloških postupaka u funkciji racionalnog korišćenja energije, povećanja produktivnosti i kvaliteta poljoprivrednih proizvoda (MPNTR - 31051)

Ključne reči: dron; modeli; klasifikacija; perspektive; primena u poljoprivredi; zaštita zemljišta i vode u R. Srbiji
Sažetak
U radu su analizirane mogućnosti i potrebe upotrebe specifičnih vrsta robota (mini bespilotnih letelica sa različitim dizajnom, o značane kao UAV) i način korištenja u poljoprivredi (agrodron). Časopis Fortune je 2015.godinu proglasio kao godinu sve većeg i široko rasprostranjene upotrbe UAV letelica, u različitim oblastima ljudske delatnosti, posebno u poljoprivredi i šumarstvu (75% upotrebe). Ovo je naročito važno za velike farme i oblasti pod šumama, gde UAV ima mnogo korisnih funkcija i veoma isplative komercijalne aplikacije. Danas, potrebe za UAV imaju nagli porast sa različitim mogućnostima kako za civilne tako i za vojne potrebe. Takođe postoji značajan interes za razvoj novih bespilotnih letelica koji mogu autonomno leteti u različitim okruženjima i lokacijama i obaviti različite misije i zadatke. Tokom protekle decenije XXI veka, širok spektar aplikacija za bespilotne letelice je dobio značaj koji je doveo do konstrukcija različitih tipova bespilotnih UAV, različitih veličina i težina i svakako namene. Naravno , tehnološki razvoj kod dron sistema je veoma tehničko -tehnološki napredan i revolucionaran, uz razvoj mobilnih i pametnih (android) telefona i interneta, brzo otvora puteve i mogućnosti za mnoge korisnike u definisanju nove budućnosti implementacije UAV različitim oblastima primene. Kompanija Livona d.o.o., Beograd i Institut za poljoprivrednu tehniku, Poljoprivredni fakultet u Beogradu, u tehničkoj saradnji imaju planove o implementaciji modela mikro drona EBee SK Livona RTK u narednim generalnim planovima za inspekciju, zaštitu i korišćenje poljoprivrednih zemljišta Republike Srbije, i posebno teritorije Opštine Stara Pazova (351 km2), gde je posebno mesto poljoprivrednog preduzeća Napredak a.d. VekomGeo d.o.o, Beograd u saradnji sa Institutom za poljoprivrednu tehniku Poljoprivrednog fakulteta u Beogradu ima planove o budućoj upotrebi drona model Aibot X6, za nadzor na površinama od 600 km2 (i poljoprivredna zemljišta) otvorenog kopa R.B. Kolubara ili drugih objekata. Institut za poljoprivrednu tehniku, Poljoprivredni fakultet u Beogradu, ima planove o saradnji sa opštino m Ub, zbog upotrebe modela mikro drona Hubsan H109S Ks4 PRO u inspekciji oko zaštite i načina korišćenja zemljišta i vo da na ovoj teritoriji (456 km2).
Reference
*** Generate 2D and 3D information, purely from images with Pix4D. Pix4D, (14 March 2017)
*** (2009/2010) U A S: The global perspective. UAS Yearbook, Vol. 164, 7th edition
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., i dr. (1998) Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Irrig. Drain. Syst., 300(9), D05109
Arjomandi, A., Agostino, S., Mammone, M., Nelson, M., Zhou, T. (2006) Classification of Unmanned Aerial Vehicle, Report for Mechanical Engineering class. Adelaide, Australia: University of Adelaide
Bachmann, R.J. (2009) Biologically inspired mechanisms facilitating multimodal locomotion for areal micro-robot. u: The 24th International Unmanned Air Vehicles Conference, Bristol, UK, Proceedings of
Binenko, V.I., Andreev, V.L., Ivanov, R.V. (2005) Remote sensing of environment on the base of the microavition. u: The 31st International Symposium on Remote Sensing of Environment, Saint Petersburg, Russia, 20-24 May, Proceedings of
Brooke-Holland, L. (2012) Unmanned Aerial Vehicles (drones):An Intro. UK: House of Commons Library, An I
Cai, G., Dias, J., Seneviratne, L. (2014) A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends. Unmanned Systems, 02(02): 175-199
Caturegli, L., Corniglia, M., Gaetani, M., Grossi, N., Magni, S., Migliazzi, M., Angelini, L., Mazzoncini, M., Silvestri, N., Fontanelli, M., Raffaelli, M., Peruzzi, A., Volterrani, M. (2016) Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses. PLoS One
Cavoukian, A. (2012) Privacy and Drones: Unmanned Aerial Vehicles. Canada: Information and Privacy Commissioner of Ontario
Chao, H., Cao, Y., Chen, Y. (2010) Autopilots for small unmanned aerial vehicles: A survey. International Journal of Control, Automation and Systems, 8(1): 36-44
Delft University of Technology (2015) TU Delft's ambulance drone drastically increases chances of survival of cardiac arrest patients. http://www.tudelft.nl/en/current/latestnews/article/detail/ambulance-drone-tu-delftvergroot-overlevingskans-bijhartstilstanddrastisch
Dickinson, M.H., Lehmann, F.O., Sane, S.P. (1999) Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422): 1954-1960
Floreano, D., Wood, R.J. (2015) Science, technology and the future of small autonomous drones. Nature, 521(7553): 460-466
Franceschini, M.R., Meyers, D.W., Muldoon, K.P. (2011) Transponderbased beacon transmitter for see and avoid of unmanned aerial vehicles: U.S. Patent 7,969, 346. Honeywell International Inc
Gerard, S. (2018) E-agriculture in action: Drones for agriculture. pp.1-126, http://www.fao.org
Gerdes, J.W. (2010) Design, analysis, and testing of a flapping wing miniature airvehicle. College Park: Univ. of Maryland-Mechanical Engineering Dept, M.Sc. Dissertation
Goerzen, C., Kong, Z., Mettler, B. (2009) A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance. Dordrecht: Springer Nature, 65-100
Hassanalian, M., Radmanesh, M., Ziaei-Rad, S. (2012) Sending instructions and receiving the data from MAVs using telecommunication networks. u: International Micro Air Vehicle Conference (IMAV2012), Braunschweig, Germany, 3-6 July, Proceeding of
Hassanalian, M., Abdelkefi, A. (2017) Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91:99-131
Hassanalian, M., Abdelkefi, A., Wei, M., Ziaei-Rad, S. (2016) A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: Theory and prototype. Acta Mech, http://dx.doi.org/10.1007/s00707-016-1757-4v
Hassanalian, M., Khaki, H., Khosravi, M. (2015) A new method for design of fixed wing micro air vehicle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(5): 837-850
Hassan-Esfahani, L. (2015) High resolution multi-spectral imagery and learning machines in precision irrigation water management. Utah State University
Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., McKee, M. (2015) Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sensing, 7(3): 2627-2646
Hockley, C., Butka, B. (2010) The SamarEye: A biologically inspired autonomous vehicle. Institute of Electrical and Electronics Engineers (IEEE), 5.C.1-1-5.C.1-9
IMAV (2010) Flight Competition, Mission Description and Rules. (https://www.scribd.com/document/38262061/Mission-on-and-Rules-IMAV-2010)
James, M., Mcmichael, C.M.S.F. (1997) Micro air vehicles: Toward a new dimension in flight. http://www.fas.org/irp/program/collect/docs/mavauvsi.htm
Jin, W., Ge, H.L., Du, H.Q., Xu, X.J. (2009) A review on unmanned aerial vehicle remote sensing and its application. Remote Sens. Inf., 1, 88-92
Karimi, P., Bastiaanssen, W. G. M. (2015) Spatial evapotranspiration, rainfall and land use data in water accounting – Part 1: Review of the accuracy of the remote sensing data. Hydrology and Earth System Sciences, 19(1): 507-532
Kendoul, F. (2012) Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. Journal of Field Robotics, 29(2): 315-378
Krijnen, D., Dekker, C. (2014) AR Drone 2.O with subsumption architecture. u: Artificial intelligence research seminar
Kurdila, A., Nechyba, M., Prazenica, R., Dahmen, W., Binev, P., DeVore, R., Sharpley, R. (2004) Vision-based control of micro-air-vehicles: progress and problems in estimation. Institute of Electrical and Electronics Engineers (IEEE), 1635-1642 Vol.2
LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B. (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. Journal of Neural Engineering, 10(4): 046003
Máthé, K., Buşoniu, L. (2015) Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection. Sensors, 15(7): 14887-14916
Miller, P.M. (2006) Mini, micro, and swarming unmanned aerial vehicles: A baseline study. Washington, DC: Library of Congress-Federal Research DIV, November
Nonami, K., Kartidjo, M., Yoon, K.J., Budiyono, A. (2013) Autonomous control systems and vehicles. Intell. Syst. Control Autom. Sci. Eng, 65
o'Connor R. Developing a Multirotor UAV Platform to Carry Out Research Into Autonomous Behaviours, Using On-board Image Processing Techniques. Faculty of Engineering, Computing and Mathematics, BE Thesis; University of
Ollero, A., Merino, L. (2004) Control and perception techniques for aerial robotics. Annual Reviews in Control, 28(2): 167-178
Oljača, M.V., Gligorević, K., Pajić, M., Zlatanović, I., Dražić, M., Radojičić, D., Marković, D., Simonović, V., Marković, I., Đokić, M., Dimitrovski, Z. (2016) Primena drona u poljoprivredi. u: Zbornik radova DPT-2016, Beograd, str. 1-10
Petricca, L., Ohlckers, P., Grinde, C. (2011) Micro- and Nano-Air Vehicles: State of the Art. International Journal of Aerospace Engineering, 2011:1-17
Restas, A. (2015) Drone Applications for Supporting Disaster Management. World Journal of Engineering and Technology, 03(03): 316-321
Sadeghi, M., Jones, S.B., Philpot, W.D. (2015) A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environment, 164:66-76
Shimoyama, L., Miura, H., Suzuki, K., Ezura, Y. (1993) Insect-like microrobots with external skeletons. IEEE Control Systems, 13(1): 37-41
Sitnikov, N., Borisov, Y., Akmulin, D., Chekulaev, I., Efremov, D., Sitnikova, V., Ulanovsky, A., Popovicheva, O. (2014) Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation. u: The 40th COSPAR Scientific Assembly, Moscow, Russia, 2-10 August, Proceedings of
Stuchlík, R., Stachoň, Z., Láska, K., Kubíček, P. (2015) Unmanned Aerial Vehicle - Efficient mapping tool available for recent research in polar regions. Czech Polar Reports, 5(2): 210-221
Tafreshi, M., Shafieenejad, I., Nikkhah, A.A. (2014) Open-loop and closed-loop optimal guidance policy for Samarai aerial vehicle with novel algorithm to Consider wind Effects. Int. J. Eng. Tech. Res. (IJETR), 2 (12)
Tanaka, H., Hoshino, K., Matsumoto, K., Shimoyama, I. Flight dynamics of a butterfly-type ornithopter. pp. 2706-2711
Tardy, B., Rivalland, V., Huc, M., Hagolle, O., Marcq, S., Boulet, G. (2016) A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data. Remote Sensing, 8(9): 696
Torres-Rua, A. (2017) Drones in agriculture: An overview of current capabilities and future directions. u: Utah Water Users Workshop, Saint George, UT,USA, pp. 1-9
Trites, S. Miniature autopilots for unmanned aerial vehicles. MicroPilot, URL: http://www.micropilot.com
Ubaya, H., Iqbal, M. (2015) First person view on flying robot for real time monitoring. ICON-CSE, 1 (1): 41-44
Valavanis, K.P., ur. (2007) Advances in unmanned aerial vehicles: State of the art and the road to autonomy. u: Intelligent Systems, Control and Automation: Science and Eng, The Netherlands: Springer, N 33
Waharte, S., Trigoni, N. (2010) Supporting Search and Rescue Operations with UAVs. Institute of Electrical and Electronics Engineers (IEEE), 142-147
Watts, A.C., Ambrosia, V.G., Hinkley, E.A. (2012) Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing, 4(6): 1671-1692
Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A., Wilkinson, B.E., Szantoi, Z., Ifju, P.G., Percival, H. F. (2010) Small Unmanned Aircraft Systems for Low-Altitude Aerial Surveys. Journal of Wildlife Management, 74(7): 1614-1619
Wood, R., Finio, B., Karpelson, M., Ma, K., Pérez-Arancibia, N., Sreetharan, P., Tanaka, H., Whitney, J. (2012) Progress on 'pico' air vehicles. International Journal of Robotics Research, 31(11): 1292-1302
Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., Sampson, P. H. (2002) Vegetation Stress Detection through Chlorophyll + Estimation and Fluorescence Effects on Hyperspectral Imagery. Journal of Environment Quality, 31(5): 1433
 

O članku

jezik rada: srpski
vrsta rada: pregledni članak
DOI: 10.5937/PoljTeh1804029O
objavljen u SCIndeksu: 21.03.2019.