Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 4 od 57  
Back povratak na rezultate
2021, vol. 69, br. 4, str. 871-904
Sprašene ljušture rečnih školjki kao jeftini adsorbent za uklanjanje malationa iz vode - ispitivanje izotermi, kinetike, termodinamike i optimizacija eksperimentalnih uslova metodom odzivnih površina
aUniverzitet odbrane, Vojna akademija, Beograd
bSerbian Armed Forces, Technical Test Center, Belgrade
cUniverzitet u Beogradu, Tehnološko-metalurški fakultet
dPalacky University, Olomouc, Czech Republic

e-adresazlatevel@yahoo.com, bogdanvujicic47@gmail.com, vllajkoo.vs@gmail.com, pedjastojis@yahoo.com, angrist2@gmail.com, vdjokic@tmf.bg.ac.rs, negovan.ivankovic@gmail.com, pavel.otrisal@upol.cz
Projekat:
213-1/21-08-03-2021

Ključne reči: uklanjanje; adsorbent; kinetika; izoterme; optimizacija; pesticidi; voda; rečne školjke
Sažetak
Uvod/cilj: U ovom istraživanju ispitivane su mogućnosti uklanjanja organofosfornog pesticida malationa iz vode pomoću novih adsorbenata na bazi biootpada rečnih školjki iz porodice Anodonta Sinadonta woodiane, materijala koji se u velikim količinama nakuplja kao otpad na obalama velikih reka. Metode: Sintetisana su dva adsorbenta: mehanički usitnjena rečna školjka (MRM) i hidroksiapatit dobijen mehanosintezom iz usitnjenih rečnih školjki (RMHAp). Dobijeni adsorbenti su okarakterisani (elementarna analiza, skenirajuća elektronska mikroskopija - SEM, elektrodisperzivna spektroskopija - EDS, rendgenska difrakciona analiza - HRD, Furijeva transformacija IR zraka - FTIR) i ispitani u šaržnom sistemu za uklanjanje organofosfornog pesticida malationa iz vode. Optimizacija uslova adsorpcije izvršena je metodom odzivnih površina - RSM, gde je ispitan uticaj promenljivih faktora (uslova adsorpcije), pH vrednosti, doze adsorbenta, vremena kontakta i temperature na kapacitet adsorbenta. Rezultati: Najbolja adsorpcija malationa postignuta je pri srednjim pH vrednostima između 6,0 i 7,0. Maksimalni Langmuirov kapacitet adsorpcije za MRM i RMHAp na 25°C iznosio je 46,462 mg g-1 i 78,311 mg g-1 , redom. Rezultati su pokazali da adsorpcija malationa na oba adsorbenta sledi pseudodrugi kinetički model i Frojndlihov izotermni model. Termodinamički parametri ukazuju na endotermnu, spontanu i izvodljivu prirodu procesa adsorpcije. Zaključak: U toku istraživanja dobijen je jeftin biokompatibilni adsorbent sa odličnim adsorpcionim karakteristikama prema malationu. Korišćenje otpada od školjki vrlo je korisno: jer otpad koji opterećuje obale različitih vodotokova uklanja zagađivače koji opterećuju vodu i izazivaju negativne efekte na životnu sredinu uopšte.

Introduction

The development of technology undoubtedly contributes to the development of society; however, it also causes environmental pollution. A distinct surge in the world's population and an increase in food needs condition the development of intensive agricultural production based on the use of inputs to overcome factors that limit production such as insects, fungi, weeds, and land scarcity (Kamga, 2019). The usage of pesticides is intended to combat animals and plants that are harmful to crops, thus enabling increased yields and ensuring the sustainability of the human population. Non-selective use of pesticides in agricultural activities leads to the pollution of surface and underground water accumulations. Due to its potential danger to health by entering the food chain for humans and animals, pesticide pollution has reached alarming proportions (Chatterjee et al, 2010).

Pesticides are ecologically very important because of their high toxicity to living organisms, including humans; the toxicological profile of this pollutant poses a potential risk to the environment and public health (Kamga, 2019). According to numerous studies, many insecticides such as DDT, deildrin, heptachlor, and aldrin bioaccumulate in blood, milk, and tissues and are also found in food products (Singh et al, 2010).

It has been confirmed that patients with acute organophosphate poisoning suffer from problems such as vomiting, nausea, miosis, excessive salivation, blurred vision, headache, dizziness, and disturbances of consciousness (Singh et al, 2010). In the case of malathion, which is one of widely used organophosphorus pesticides, almost all the observed effects occur due to its active metabolite malacon (Singh et al, 2010) on the nervous system or gives secondary effects to its primary action.

Malathion is slowly absorbed through the skin, but is more rapidly and efficiently absorbed via ingestion. Once they are absorbed, phosphorothioates such as malathion are metabolically activated to the "oxon" forms which have greater toxicity than the parent insecticide. The metabolism of malathion leads to the formation of malathion monocarboxylic acid, malathion dicarboxylic acid, dialkyl phosphate metabolites, and other metabolites (Bouchard et al, 2003).

In recent years, research on the removal of pollutants from water has been intensified, based on the phenomenon of adsorption, among which the removal of pesticides from water occupies a special place. We have a large number of potentially highly effective adsorbents for removing pesticides from water such as activated carbon (Kamga, 2019; Ohno et al, 2008; Hameed et al, 2009), but the high price of activated carbon limits its mass use in many poor countries. Therefore, the attention of researchers is increasingly focused on finding a cheap, environmentally friendly, and highly efficient adsorbent to solve this problem. Various adsorbents such as agricultural by-products, waste materials, cheap minerals and biomass have been used to remove various pollutants from wastewater (Chatterjee et al, 2010; Pantić et al, 2019; Bajić et al, 2013; Stevanović et al, 2020; Karanac et al, 2018; Perendija et al, 2021).

Malathion, an organophosphorus highly selective insecticide, is widely used in agriculture worldwide (Chatterjee et al, 2010), primarily in the control of insects, including mosquitoes, aphids, grass insects, and many other parasites of vegetable crops and fruits. Until today, the removal of malathion from wastewater has not been studied in detail and only a few studies are available in this regard (Chatterjee et al, 2010).

The shards of river shells are waste that burdens a large number of beaches and the banks of rivers, seas, and lakes. They also appear as waste after use in human nutrition. The aim of this paper is to apply shellfish as a cheap, widely available, environmentally friendly material for removing organophosphorus pesticides from water. In this way, we get a double benefit: we use waste that burdens the shores of different watercourses to remove pollutants that load the water and cause negative effects on life and health of humans and animals as well as on the environment in general.

Materials and methods

Materials

A large number of different chemicals were used during the research. Bearing in mind that the properties of the adsorbent, as well as the research results largely depend on the purity of the reagent, high purity chemicals were used:

  • 5% hydrogen peroxide solution – H2O2 (Sigma-Aldrich, PA),

  • concentrated nitric acid HNO3 (Fluka, ultrapure) – used for digestion of shells in order to determine the elemental composition and adjust the pH level,

  • concentrated phosphoric acid H3PO4 (Sigma-Aldrich, PA),

  • sodium hydroxide – NaOH (Sigma Aldrich, PA) – used to adjust the pH of the solution in the adsorption process and titration during the synthesis of adsorbents,

  • 96% ethyl alcohol (Sigma Aldrich, PA) – used in the washing of adsorbents,

  • deionized water (resistance of 18 MΩ cm) – used for sample preparation and dilution of the solution,

  • malathion, 60% technical solution (Galenika-Fitofarmacija) – used for performing an adsorption experiment (as 20 mg dm−3 concentration solution),

  • biowaste of shellfish from the genus Anodonta Sinadonta woodiane, collected from the banks of the Tisza River.

Synthesis of adsorbents

During the research, two types of adsorbents based on river shell shards were synthesized and tested in the process of adsorption:

  1. shells, washed, mechanically ground, sieved, washed, and dried in a vacuum oven-clean shells (MRM), and

  2. fish carp scales chemically modified by converting calcium carbonate to hydroxyapatite by mechanosynthesis (RMHAp).

The shards of the Anodonta Sinadonta woodiane river shell were thoroughly washed and rinsed in distilled water, air-dried for 24 h, ground in a steel mill for crushing sediments and sifted into a 0.5 -1 mm granulation powder. The shell powder was washed in vacuo with deionized water, ethyl alcohol and dried in vacuo for 24 h at 110o C to give the first MRM adsorbent (mechanically prepared river shells).

In the stainless steel vessel of a planetary ball mill (Retsch PM100 CM), 10 g of MRM was mixed with 11.23 ml (18.92 g) of concentrated H3PO4-CaCO3 ratio: H3PO4 → Ca/P=1.67; zirconium beads were added in ratio 20:1 of the bead mass to a sample and the mixture was treated in a ball mill for 10 h at 500 grp for further mechanosynthesis. After the treatment in a ball mill, the obtained mixture was washed copiously in vacuo with deionized water to remove unreacted parts of the acid and dried in vacuo for 24h at 110oC to obtain a second RMHAp adsorbent (hydroxyapatite).

Material characterization methods

The synthesized adsorbents were characterized by FTIR, XRD, SEM and EDS techniques. The elemental composition was determined by a chemical elemental analyzer, the content of individual elements was determined by dissolving in acids and measuring the content on a plasma mass spectrometer with a plasma-coupled plasma ICP-MS system Agilent 7500C (Agilent Technologies, Inc.) and an atomic adsorption spectrometer. The concentration of malathion before and after adsorption was determined using a gas chromatograph (GC) equipped with a flame ionization detector (FID) – Varian 3400 with FID operating system. The specific surface area of the adsorbent, the specific pore volume, and the pore diameter were determined by the BET method of adsorption / desorption in a stream of nitrogen at 72.4 K, using a gas sorption analyzer Micromeritics ASAP 2020MP v 1.05 H. The infrared Fourier transform spectrum (FTIR) was recorded in the transformation mode between 400 and 4000 cm-1 at a resolution of 4 cm-1 using an infrared (IR) spectrometer with Fourier transformation (FT) – Nicolet iS 50 manufactured by Thermo Scientific. The adsorbents morphology was observed using Tescan Mira 3 FEG scanning electron field microscopy (FESEM). The morphological structure was determined by x-ray diffraction, XRD, using an ENRAF NONIUS FR590 XRD (Bruker AKSS, MA, USA) diffractometer with Cu Ka 1,2 radiation and a step / scan time regime of 0.05 / 1 s. The pH value of the zero charge point (pHPZC) of adsorbents was determined by the "drift" method (Gao et al, 2009).

Malathion adsorption research

Adsorption experiments were performed in a batch system where the initial concentration of malathion solution was fixed Co= 20.32 mg L-1, and the adsorbent dose was varied from 100 to 1000 mg L-1. In order to examine the pH value influence on the adsorption process, the pH value was varied from 4.0 to 10.0. Thermodynamic and kinetic adsorption experiments were performed at temperatures of 25, 35 and 45oC, and the adsorption process was monitored in a time interval of 10 to 180 minutes. The amount of adsorbed molecules was calculated as the difference between the initial and equilibrium concentration.

The adsorbent capacity was calculated in accordance with Eq. (1):

(1) \(q=\frac{C_{i}-C_{f}}{m}V\)


where q is the adsorption capacity in mg g-1, Ci and Cf are the initial and final malathion concentrations in mg L-1 (μg L-1), respectively, V is the volume of the solution in L, and m is the adsorbent mass, expressed in g.

Kinetic studies

The study of kinetics provides an insight into a possible mechanism of adsorption along with the reaction pathways. The adsorption data were analyzed by linear, non-linear least-squares and graphic methods in the form of pseudo-first, pseudo-second-order (Lagergreen) and second order models Table 1.

Table 1. Kinetic model equations
Таблица 1. Уравнения кинетических моделей
Табела 1. Једначине кинетичких модела

Kinetic model Nonlinear form Model parameters Equation
Pseudo-first-order equation \(q=q_e(1-e^{-k_1t})\) k1 - pseudo first-order rate constant,
(min-1)
qe - adsorption capacity at time t,
(mg g-1)
q - adsorption capacity, (mg g-1)
t – time, (min)
(2)
Pseudo-second order equation (Lagergreen) \(q=\frac{t}{\frac{1}{k_2q_e^2}+\frac{t}{q_e}}\) k2 – pseudo-second order
rate constant, (g mg-1 min-1)
(3)
Second order \(q=\frac{t}{\frac{1}{k_2q_e^2}+\frac{t}{q_e}}\) k2 – second order rate constant,
(L mg-1 min-1)
(4)

Diffusion models such as Weber-Morris, Dunwald-Wagner model, and Homogenous Solid Diffusion Model (HSDM) were used for modeling diffusional processes/limiting step of the overall process (Table 2) (Budimirović et al, 2017; Taleb et al, 2015; Taleb et al, 2019).

Table 2. Equations of the diffusion kinetic models
Таблица 2. Уравнения диффузионных кинетических моделей
Табела 2. Једначине дифузионих кинетичких модела

Kinetic model Nonlinear form Equation
Weber-Morris \(q\;=\;k\sqrt{t} + C\) (5)
Dunwald-Wagner model \(\frac{q}{q_e}=1-\frac{6}{\pi^2}\sum_{n=1}^{\infty}{\frac{1}{n^2}exp\left[-\ n^2K\ t\right]}\\log\left(1-\left(\frac{q}{q_e}\right)^2\right)=-\frac{K}{2.303}t\) (6)
Homogenous Solid Diffusion Model (HSDM) \(\frac{\partial q}{\partial t}=\frac{D_s}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial q}{\partial r}\right) \\ \frac{q}{q_s}=1+\frac{2R}{\pi\ r}\sum_{n=1}^{\infty}{\frac{\left(-1\right)^n}{n}\sin{\frac{n\pi r\ }{R}}exp\left[\frac{-D_s\ t\ \pi^2\ n^2}{R^2}\right]}\) (7)

The activation energy for arsenate adsorption was calculated using Arrhenius Eq. (8):

(8) \(k'=k_{0}\;exp\left [ \frac{-E_{a}}{RT} \right ]\)

where k´ (g mg-1 min-1) is the pseudo-second order rate adsorption constant, k0 (g mmol-1 min-1) is the temperature independent factor, Ea (kJ mol-1) is the activation energy, R (8.314 J mol-1 K-1) is the gas constant, and T (K) is the adsorption absolute temperature. A plot of ln K' versus 1/T gave a straight line with a slope – Ea/R from which the activation energy was calculated.

Isotherm models

The equilibrium adsorption data were fitted by the isotherm models Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isothermal models (Karanac et al, 2018).

The Langmuir equation is based on the assumption that the point of maximum adsorption corresponds to a saturated mono-layer of adsorbate molecules on the adsorbent surface-where the energy of adsorption remains constant and no transfer of the adsorbate in the surface plane occurs.

The Freundlich sorption isotherm, widely and reliably utilized as a mathematical determining expression, allows for a calculation encompassing surface heterogeneity and exponential distribution of active sites as well as their respective energies (Karanac et al, 2018).

Temkin conceived this equation for subcritical vapors in micropore solids where the adsorption process follows a pore filling mechanism onto an energetically non-uniform surface.

The Temkin isotherm is based on the assumption that the decline of the heat of sorption as a function of temperature is linear rather than logarithmic. The Dubinin-Radushkevich model states that the adsorption capacity depends on the adsorbed amount on the surface of the material, differently from the Langmuir model." (Karanac et al, 2018).

Table 3. Adsorption isotherms equations
Таблица 3. Уравнения изотермы адсорбции
Табела 3. Једначине адсорпционих изотерми

Isotherms Nonlinear form Model parameters Equation
Langmuir \(q_e=\frac{q_mK_LC_e}{1+K_LC_e}\) qe – adsorption capacity at the equilibrium,
(mg g-1)
qm – maximum adsorption capacity, (mg g-1)
KL – Langmuir equilibrium constant, (L mg-1)
Ce – metal ion concentration at the equilibrium (mg L-1)
(9)
Freundlich \(q=K_FC^{1/n}\) KF – Freundlich equilibrium constant,
(mg g-1)(L mg-1)1/n
n – Freundlich equilibrium constant (intensity of the adsorption or surface heterogeneity)
(10)
Temkin \(q_e=\frac{RT}{b}\;ln(AC_{e})\) A -Temkin isotherm equilibrium binding constant (L g-1)
b – Temkin isotherm constant R-universal gas constant (8.314J mol-1K-1)
T-Temperature at 298K.
(11)
Dubinin-Radushkevich \(q_e=q_m\;exp\left ( -B(RT)^{2}\left ( ln\left ( \;1+\frac{1}{Ce} \right ) \right )^{2} \right )\) (12)

The equations of adsorption isotherms models are presented in Table 3.

Thermodynamic studies

The feasibility of the experimental data obtained from the adsorption studies were analyzed through the thermodynamic investigation. The parameters of free energy change (ΔG°, kJ/mol), enthalpy change (ΔH°, kJ mol-1), and entropy change (ΔS°, J mol-1 K-1) were calculated using the Van't Hoff equations (13) and (14) (Karanac et al, 2018):


(13) \(\Delta G^{0}\;=\;-RTln(b)\)

(14) \(ln(b)\;=\;\frac{\Delta S^{0}}{R}\;-\;\frac{\Delta H^{0}}{(RT)}\)

The separation factor (RL) is in relation to the Langmuir isotherm and it is used to assess adsorption feasibility on the given adsorbent. It is calculated using the next Eq (15):

(15) \(R_{L}\;=\;\frac{1}{(1+bC_{0})}\)

where C0 (mol dm-3) is the initial adsorbate concentration, b (dm3 mol-1) is the Langmuir constant. The value of RL points out to the isotherm type: irreversible (RL = 0), favorable (0 < RL <1), linear (RL = 1), unfavorable (RL > 1).

Statistical analysis of the experimental data

All adsorption experiments were repeated three times and the mean values were taken for further processing and modeling. The obtained results were analyzed using the normalized standard deviation Δq (%) which is calculated using the following equation:

(16) \(\mathrm{\Delta\ q}\left(\%\right)=\sqrt{\sum \frac{\left [ (q_{exp}\;-\;q_{cal})/q_{exp}) \right ]^{2}}{N\;-\;1}}x100\)

where qexp and qcal are the experimental and calculated values of adsorbed malathion, and N is the number of data used in the analysis. The maximum deviation is <3%, which is an experimental error. Standard errors for isothermal, kinetic, and thermodynamic parameters were determined using the commercial software Microcal Origin 8.0 (Pantić et al, 2019).

In order to confirm the adsorption model that best corresponds to the experimental data, they were analyzed by the ANOVA variance analysis, using the F value together with the values of the correlation coefficient (R) from the regression analysis (Pantić et al, 2019; Bajić et al, 2019).

Optimization of the experimental adsorption conditions

The optimization of the adsorption conditions was performed using the RSM (Surface Response Methodology) method. Classical adsorption optimization usually involves examining the impact of each variable separately. However, it is difficult to predict optimal reaction conditions based on such results due to possible interactions between different independent variables involved in adsorption reactions (Pantić et al, 2019; Bajić et al, 2019). Recently, various statistical programs have been used that are useful to help establish the design of the experiment. Using response surface methodology (RSM) as a mathematical function, it is possible to examine the individual and interactive influences of different variables in relation to different predictors. In that way, we get the optimal conditions that are needed to get the best results (Pantić et al, 2019). In addition, it has been proven that the central composition design (CCD) and the Bok-Behnken design (BBD) are efficient designs of RSM models in optimizing the adsorption process (Pantić et al, 2019). In this study, the synthesized modified adsorbent RMHAp was used to remove malathion from water. The adsorption process is optimized by numerical and graphical optimization methods using the Bok-Behnken design. We used the design with four factors (input variables) and three levels of values in which 29 experiments with five replications in the central point were performed. The capacity of the adsorbent was taken as a response. Extremely optimized conditions were confirmed by additional experimental testing.

Table 4. An experimental malathion adsorption plan was performed using a four-factor BBD design with three levels of value
Таблица 4. Экспериментальный план адсорбции малатиона с использованием четырехфакторного BBD моделирования с тремя уровнями величин
Табела 4. Експериментални план адсорпције малатиона добијен коришћењем четворофакторског ББД дизајна са три нивоа вредности

Ordinal number A
Dose ads.
(mg/L)
B
t (min)
C
pH
D
T(oC)
Response
qe
(mg g-1)
1. 1000 95 7 45 14.1
2. 1000 95 7 25 12.6
3. 100 95 4 35 30.11
4. 550 95 4 45 12.05
5. 1000 180 7 35 15.06
6. 100 95 10 35 27.4
7. 1000 95 10 35 6
8. 550 95 10 25 9.38
9. 550 95 7 35 24.3
10. 550 10 7 25 13.2
11. 100 95 7 45 71.2
12. 100 180 7 35 81.15
13. 550 95 4 25 10.1
14. 550 10 4 35 8
15. 550 95 10 45 13.1
16. 100 10 7 35 27.3
17. 550 180 7 25 28.5
18. 550 10 7 45 14
19. 550 95 7 35 24.3
20. 1000 10 7 35 5.21
21. 550 180 7 45 28.75
22. 550 95 7 35 24.3
23. 550 180 10 35 13.8
24. 550 95 7 35 24.3
25. 550 95 7 35 24.4
26. 1000 95 4 35 6.75
27. 550 180 4 35 15.11
28. 100 95 7 25 64.4
29. 550 10 10 35 5.6

The conditions of the adsorption experiment are given in Table 4.

Results and discussion

Physical and chemical characterizations of adsorbents

The elemental composition of shellfish shards is given in Table 5.

Table 5. Concentrations of major, minor and trace elements obtained in this study using the ICP-AES and ICP-MS methods
Таблица 5. Концентрации основных, второстепенных и микроэлементов, полученных в данном исследовании с помощью методов ICP-AES и ICP-MS.
Табела 5. Концентрације главних, споредних и микроелемената у траговима добијене у овом истраживању применом методе ИКП-АЕС и ИКП-МС

Element
ICP-AES
Method
Ca (wt %) Fe (wt %) Mg (wt %) Si (wt %) Na (wt %) Mn (μg g−1)
34.1 0.003 0.104 0.004 0.182 30.4
Element
ICP-MS
Method
Cd
(μg g−1)
Co
(μg g−1)
Cu
(μg g−1)
Ni
(μg g−1)
Pb
(μg g−1)
Zn
(μg g−1)
0.094 0.079 31.2 2.01 3.09 21.5

This elemental composition is similar to that of other authors (Vei et al, 2018; Buasri et al, 2013) and indicates that shellfish shards are mostly composed of calcium carbonate-based minerals (calcite and argonite) and the organic part of chitin that connects calcite structures. The composition of shells also includes various microelements-ions, which replace Ca2+ in the structure of calcium carbonate and are incorporated into the shell during its formation. The availability and rate of bioaccumulation of these ions is a function of environmental and biological factors. Thus, different habitats, contamination-the presence in the water of different ionic species, different stages of shell development can represent different patterns of metal incorporation.

The analyzed shards of the river shell Anodonta Sinadonta woodiane are composed of two polymorphs of calcium carbonate: calcite and aragonite, with calcite being the dominant form. Recent studies have found that the dominant CaCO3 polymorph may be temperature dependent-aragonite deposition is at high temperature and calcite deposition is at low temperature (Kuklinski and Taylor, 2009; Ramajo et al, 2015; Krzeminska et al, 2016). The confirmation of the composition of the shells can also be seen on the spectrum of energy dispersive spectrometry (Figure 1) where the main building blocks are observed before (a) and after the modification of the shells (b).

Figure 1 EDS spectrum of shellfish powder before (a) and after modification (b)
Рис. 1
Спектр EDS порошка раковины до (а) и после модификации (б)
Слика 1
ЕДС спектар праха шкољке пре (а) и након модификације (б)

After modification, we notice the presence of phosphorus in the adsorbent, which confirms the transition of calcium carbonate to hydroxyapatite.

In the scanning electron microscopy photographs (Figure 2) with different magnifications, we can clearly see the lamellar structure of the shell.

Figure 2 SEM representation of mechanically prepared shells at different magnifications
Рис. 2
СЭМ-изображение механически подготовленных раковин при различном увеличении
Слика 2
СЕМ приказ механички припремљених шкољки при различитим увећањима

The lamellae consist of materials based on calcium carbonate (calcite and argonite) with a thickness of about 1 μm and with cavities between the lamellae with a diameter of about 50 to 100 nm. They are interconnected by organic polymer chitin; nanopores are observed on the lamellae surface.

After mechanosynthesis, the lamellar structure derived from calcium carbonate is lost and we get the granular morphology of hydroxyapatite, presented in Figure 3.

Figure 3 SEM representation of the shells modified by mechanosynthesis at different magnifications
Рис. 3
СЭМ-изображение раковин, модифицированных механосинтезом, при различном увеличении
Слика 3
СЕМ приказ механосинтезом модификованих шкољки при различитим увећањима

Electron scanning microscopy images showed the presence of rounded HAp microparticles in isolated and agglomerated forms. Based on the observations, HAp particles can be considered as microspheres whose crystal size is well below 1 μm.

The physical properties of the adsorbent, the specific surface area, the pore volume and the zero charge point are given in Table 6.

Table 6. Physical properties of MRM and RMHAp adsorbents
Tаблица 6. Физические свойства адсорбентов MRM и RMHAp
Табела 6. Физичке карактеристике MRM и RMHAp адсорбената

Adsorbent Specific surface area
(m2 g-1)
Pore volume
(cm3 g-1)
Mean pore diameter
(nm)
pHPZC
MRM 2,58 0,096 6,7 7,2
RMHAp 1,95 0,088 9,18 7,05

The change in the pHPZC value occurred under the influence of the change in the surface properties of the adsorbent due to modification (Table 6). At pH <pHPZC, negatively charged species participate in electrostatic attraction with a positively charged adsorbent surface and vice versa, at pH> pHPZC, electrostatic repulsion is a major factor leading to low adsorption efficiency

Figure 4 shows the FTIR spectra of both adsorbents (MRM and RMHAp) before and after the adsorption of malathion from aqueous solution.

Figure 4 FTIR spectrum of shellfish shards and modified shards before and after the adsorption of malathion from aqueous solution
Рис. 4
FTIR-спектр осколков раковин и модифицированных осколков до и после адсорбции малатиона из водного раствора
Слика 4
FTIR спектар љуштура шкољки и модификованих љуштура пре и након адсорпције малатиона

In the spectrum a, the characteristic peaks at 710, 856 and 1460 cm-1 indicate the carbonate group in the sample which confirm that the sample contains CaCO3. In addition, small infrared absorption spectra are shown at ~ 1790, and ~ 2874 cm-1 and have been attributed to regimens of combining different ranges of CO32- (Khiri et al, 2016). The spectrum at ~ 1083 cm-1 is related to the C – O tensile vibrations as CO2 adsorbed on the CaO surface (Khiri et al, 2016).

The FTIR spectrum (c) of the RMHAp adsorbent showed pronounced peaks at 560 cm-1 corresponding to the symmetrical bending regime of PO43- and 1064 cm-1 corresponding to the asymmetric stretching regime of the PO4 3group corresponding to the vibrational structures of hydroxyapatite (Khiri et al, 2016). The large peak in Figure 4 in the spectrum a and a smaller peak in the spectrum c at 1460 cm−1 represent carbonate (CO3), which is more pronounced before mechanosynthesis, i.e. before the conversion of calcium carbonate into hydroxyapatite.

The characteristic vibration peaks of shell dust before and after modification with a comparative review by other researchers are given in Table 7.

Table 7. FTIR shell powder vibration mode before and after mechanosynthesis (MRM and RMHAp) and references
Таблица 7. FTIR режим вибрации порошка раковины до и после механосинтеза (MRM и RMHAp) и ссылки
Табела 7. FTIR режим вибрација праха шкољке пре и после механосинтезе (MRM и RMHAp) и референце

         Vibration frequency (cm-1)
Our research FTIR (Khiri et al, 2016) (Salma et al, 2010) (Islam et al, 2013)
Symmetrical deformation CO32- 710 708 706
Asymmetric deformations CO32- 856, 1460 855, 1454 857, 1455
Symmetric stretching vibration CO32- 1083 1082 1082
CO32- deformations 1790 1786 1794
PO43- bending 560 565 560, 599
PO43- stretching 1064 1024 1046
CO32- group 1460 1454 1424

After sorption of malathion (spectra b and d) on both adsorbents, changes were observed in the appearance of new peaks, decrease in their intensity as well as in their disappearance and displacement.

The diffraction analysis (XRD) results showed that the composition of the river shell (spectrum a) mainly consists of two forms of CaCO3, primarily calcite as shown by the diffraction peak at 2𝜃 about 29.52, 39.56, 43.27, 47.6, and 48.63 (Wei et al, 2018) and argonite (Islam et al, 2013). Other minerals are present in smaller quantities as a consequence of the uptake of these minerals from the water during shell formation.

Figure 5 X-ray diffraction analysis (XRD) spectrum of shellfish shards before (a) and after modification by mechanosynthesis (b)
Рис. 5
Спектр рентгеновского дифракционного анализа (XRD) осколков раковин до (а) и после модификации механосинтезом (б)
Слика 5
Спектар дифракционе анализе помоћу Х-зрака (XRD) љуштура шкољки пре (а) и након модификације механосинтезом (б)

The XRD spectrum of synthesized HAp also shows relatively high intensities and sharp peaks in the range of 23-39 (about 25.80 and 32.90 (Skwarek et al, 2014) corresponding to (hkl) indices) at (002) and (300), and lower peak intensities in the range of 40-39. 60, which is consistent with the formation of the lower crystal structure of HAp. (Figure 5)

Influence of the solution pH on adsorption

The influence of the pH value on the system is manifested through surface tension, surface properties, degree of ionization of groups present on the surface of the adsorbent, as well as through the speciation of ions in aqueous solution at a certain pH value.

The pH effect on malathion removal is presented in Figure 6.

Figure 6 Influence of the pH value of the initial solution on malathion removal
Рис. 6
Влияние значения pH первичного раствора на удаление карбофоса
Слика 6
Утицај pH вредности почетног раствора на уклањање малатиона

As mentioned above, malathion retention depends on the nature of the adsorbent. Removal by RMHAp adsorbent is greater than removal by MRM. Similarly to the Saib study (Bouchenafa-Saib et al, 2014), the pH value of 6 appears to be optimal for malathion sorption for both adsorbents. At this pH, H3O+ ions attract surface oxygenated adsorbent groups, which could lead to the formation of a bond between H3O+ and any doublet without malathion-sulfur. Below and above this pH value, adsorption is lower due to the hydrolysis of malathion at values higher than 8 and lower than 5 and the formation of ionic species with lower affinity for the adsorbent surface, i.e. precipitation contributes to ion removal.

Adsorption largely depends on the solution pH so the process itself is more favorable at medium pH values. Also in the natural environment (water) at pH values lower than 5 and higher than 8, malathion easily hydrolyzes to metabolites that are more toxic than malathion itself (Bouchard et al, 2003), which is another reason why sorption experiments are performed at pH 6.

Adsorption kinetics

The effect of time on malathion adsorption was monitored in the range of 10 to 180 minutes. The final equilibrium was established after 300 minutes but, since the difference in the removal of As (V) ions from 180 to 300 minutes ranged from 3 to 7% in order to speed up the process, we took 180 minutes as the final time.

In order to determine the kinetic model that accompanies adsorption in order to interpret the adsorption mechanism, we used pseudo-first, pseudo-second-order and second-order models (Table 3).

Table 8 shows the kinetic parameters for malathion absorption on MRM and RMHAp adsorbents.

Table 8. The kinetic parameters for malathion adsorption on MRM and RMHAp adsorbents (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25oC)
Таблица 8. Кинетические параметры адсорбции малатиона на адсорбентах MRM и RMHAp (Ci[малатион] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25oC)
Табела 8. Кинетички параметри адсорпције малатиона на адсорбентима MRM и RMHAp (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25oC)

Adsorbent Model parameters Pseudo-first Pseudo-second Second-order
MRM qe 37.247 53.589 53.589
k (k1, k2) 0.01589 0.00054 0.000093
R2 0.960 0.992 0.931
RMHAp qe 67.425 92.142 92.142
k (k1, k2) 0.02041 0.00031 0.00025
R2 0.974 0.994 0.941

The results shown in Table 8, according to the regression coefficient (R2) and the standard error for all model parameters, indicate that the kinetics for all adsorbents is best described using a pseudo-second order model.

The rate constants of diffusion kinetic models, intra-particle diffusion, Weber-Morris, Dunwald-Wagner and homogeneous solid diffusion models for malathion adsorption on MRM and RMHAp adsorbents under the same experimental conditions are presented in Table 9.

Table 9. Parameters of diffusion kinetic models (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25oC)
Таблица 9. Параметры диффузионных кинетических моделей (Ci[малатион] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25oC)
Табела 9. Параметри дифузионих кинетичких модела (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25oC)

Adsorbent Model Model Values
MRM Weber-Morris Step 1 kp1 (mg g-1 min-0.5) 3.6188
(Intra-particle diffusion) C (mg g-1) 3.176
R2 0.995
Weber-Morris Step 2 kp2 (mg g-1 min-0.5) 0.304
(equilibrium) C (mg g-1) 40.247
R2 0.999
Dunwald-Wagner model K 0.00711
R2 0.953
Homogenous Solid
Diffusion Model (HSDM)
Ds 9.34 • 10-12
R2 0.950
RMHAp Weber-Morris Step 1 kp1 (mg g-1 min-0.5) 6.792
(Intra-particle diffusion) C (mg g-1) 2.286
R2 0.998
Weber-Morris Step 2 kp2 (mg g-1 min-0.5) 0.608
(equilibrium) C (mg g-1) 67.719
R2 0.999
Dunwald-Wagner model K 0.00698
R2 0.956
Homogenous Solid
Diffusion Model (HSDM)
Ds 9.24 • 10-14
R2 0.950

The complex nature of the kinetics of adsorption processes can be described by observing the adsorption of all ions adsorbed on the adsorbent as a single step, as described by a pseudo-second order equation, but can also be described by consecutive / competitive steps.

The Weber-Morris model reveals two linear steps that describe the adsorption process: fast kinetics in the first step and slower in the second. The first linear part describes the external mass transfer to the adsorbent surface, while the second part describes the process of material transfer into the porous structure of the adsorbent, and strictly depends on the size and shape of the pores as well as on the density of their network on MRM and RMHAp adsorbents. Intra-particle and film diffusions slow down the transport of adsorbates. In the final phase of the process, adsorption takes place slowly until saturation is achieved on the entire available surface of the adsorbent.

Adsorption activation energy

In relation to the results of the kinetic research performed at temperatures of 298, 308, and 318 K, it is possible to determine the activation energy using the Arrhenius equation (Table 10).

Table 10. Pseudo-second kinetic model parameters for malathion adsorption on MRM and RMHAp adsorbents (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1)
Таблица 10. Параметры псевдо-второго порядка кинетической модели адсорбции малатиона на адсорбентах MRM и RMHAp (Ci[малатион] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1)
Табела 10. Параметри псеудодругог кинетичког модела адсорпције малатиона на адсорбентима MRM и RMHAp (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1)

Adsorbent Temperature qe (mg g-1) k2 (g (mg min)-1) R2
MRM 25oC 53.594 0.000537 0.992
35oC 57.658 0.000636 0.992
45oC 62.271 0.000706 0.993
RMHAp 25oC 92.142 0.000308 0.994
35oC 92.333 0.000351 0.995
45oC 94.224 0.000374 0.995

The linear form of the Arrhenius equation (19) is:

(19) \(ln\;K'\;=-\frac{E_{a}}{RT}\;+\;ln\;A\)

where K' is the reaction rate constant at a certain temperature, Ea shows the activation energy, R is the universal gas constant (8.314), T is the temperature in K and A is the Arenius factor (frequency for a given reaction).

Physosorption or physical adsorption generally possesses energy up to 40 kJ mol-1, while hemisorption requires higher energy and activation energy over 40 kJ mol-1 (Karanac et al, 2018). Based on the obtained results where Ea for MRM is 10.816 kJ mol-1 and for RMHAp 7.711 kJ mol-1, we can conclude that the main mechanism of adsorption is physical adsorption.

Adsorption isotherms

The state of interactions/bonds on the surface of the adsorbate / adsorbent can be observed by fitting the experimental data with different adsorption isotherms. The normalized correlation coefficient and standard deviation were used to estimate the fit of the adsorption data.

The experimental data were compared with the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models already discussed, the parameters of which are shown in Table 11.

Table 11. Parameters of the adsorption isotherms of malathion adsorption on MRM and RMHAp adsorbents
Таблица 11. Параметры изотермы адсорбции малатиона на адсорбентах MRM и RMHAp.
Табела 11. Параметризотерми адсорпције малатиона на адсорбентима MRM и RMHAp

Adsor-bent Isothermal models and parameters Temperature
25oC 35oC 45oC
MRM Langmuir
isotherm
qm (mg g-1) 46.462 48.135 49.789
KL (L mg-1) 1.918 1.968 2.027
KL (L mol-1) 633570 650164 669551
R2 0.992 0.994 0.995
Freundlich
isotherm
KF (mg g-1) (dm3 mg-1)1/n 28.469 29.252 30.066
1/n 0.182 0.189 0.195
R2 0.997 0.998 0.988
Temkin
isotherm
AT (dm3 g-1) 443.06 376.95 329.44
bT 4.95 5.25 5.54
R2 0.980 0.980 0.978
Dubinin-
Radushkovich
isotherm
qm (mg g-1) 34.25 35.18 36.12
Kad (mol2 kJ-2) 9.17 9.15 9.12
Ea (kJ mol-1) 7.38 7.39 7.40
R2 0.802 0.796 0.791
RMHAp Langmuir
isotherm
qm (mg g-1) 78.311 84.502 87.485
KL (L mg-1) 1.531 1.614 1.715
KL (L mol-1) 505829 533409 566567
R2 0.980 0.982 0.985
Freundlich
isotherm
KF (mg g-1) (dm3 mg-1)1/n 39.432 42.473 44.313
1/n 0.275 0.279 0.289
R2 0.998 0.996 0.987
Temkin
isotherm
AT (dm3 g-1) 80.959 100.297 99.368
bT 10.03 10.17 11.05
R2 0.938 0.933 0.958
Dubinin-
Radushkovich
isotherm
qm (mg g-1) 47.82 49.48 51.05
Kad (mol2 kJ-2) 8.84 8.81 8.78
Ea (kJ mol-1) 7.52 7.53 7.55
R2 0.792 0.766 0.766

By analyzing the experimental data on the adsorption of malathion molecules on the tested adsorbents, the best fit for both adsorbents is given by the Freundlich isothermal model. The results of modeling malathion adsorption on the tested adsorbents are given in Table 11.

According to the Freundlich isotherm, the mechanism of ion adsorption on MRM and RMHAp can be described as heterogeneous adsorption, where the adsorbed ions / molecules have different enthalpies and adsorption activation energies. The value of n from the Freundlich isotherm is a measure of adsorption intensity or surface heterogeneity. Values of n near zero indicate a highly heterogeneous surface. Values of n <1 (Table 11) imply a hemisorption process, and higher values indicate combined adsorption, e.g. physisorption and hemisorption with different process contributions at different system balancing steps. The values in Table 16 indicate that the adsorption was combined in all cases.

The calculation of the separation factor (RL) according to equation (20) which is based on the parameter b of the Langmir isotherm indicates the feasibility of adsorption on a given adsorbent. It is calculated using the following equation:

(20) \(R_{L}\;=\;\frac{1}{(1\;+\;bC_{0})}\)

where C0 (mol L-1) is the initial adsorbate concentration and b (L mol-1) is the Langmir constant. The value of RL indicates the feasibility of the adsorption process: irreversible (RL = 0), favorable (0 <RL <1), linear (RL = 1), and unfavorable (RL> 1).

Figure 7 Review of the results of the adsorption experiments with the best-fitting models of isotherms (solid line) for the removal of malathion on adsorbents MRM (a) and RMHAp (b)
Рис. 7
Обзор результатов адсорбционных экспериментов с наиболее подходящими моделями изотерм (сплошная линия) для удаления малатиона на адсорбентах MRM (a) и RMHAp (б)
Слика 7
Преглед резултата адсорпционих експеримената са најбоље уклопљеним моделима изотерми (пуна линија) за уклањање малатиона на адсорбентима MPM (а) и RMHAp (б)

The RL for adsorption of malathion ions on MRM ranges from 0.023 to 0.204 and for RMHAp from 0.027 to 0.243 indicating that the adsorption process is favorable (Figure 7).

Thermodynamic studies

Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were calculated by Van't Hoff equation (21) and (22):

(21) \(\Delta G^{0}\;=\;-RT\;ln(b)\)

(22) \(ln(b)\;=\;\frac{\Delta S^{0}}{R}-\frac{\Delta H^{0}}{(RT)}\)

where T is the absolute temperature in K, R is the universal gas constant (8.314 mol-1 K-1) and the adsorption constant b is calculated using the Langmir isotherm (Table 12). ΔH0 and ΔS0 were calculated from the slope and the sections in the diagram ln(b)-T-1, assuming that the adsorption kinetics values are stationary.

Table 12. Calculated Gibbs free adsorption energy, enthalpy and entropy for malathion adsorption on MRM, and RMHAp at 25, 35, and 45oC
Таблица 12. Расчет свободной адсорбционной энергии, по Гиббсу, энтальпия и энтропия адсорбции малатиона на MRM и RMHAp при 25, 35 и 45oC
Табела 12. Прорачун Гибсове слободне енергије, енталпије и ентропије адсорпције малатиона на MRM и RMHAp на 25, 35 и 45oC

Adsorbent ΔG° (kJ mol-1) ΔH°
(kJ mol-1)
ΔS°
(J mol-1 K-1)
R2
25°C 35°C 45°C
MRM -43.07 -44.58 -46.11 2.18 151.75 0.996
RMHAp -42.51 -44.07 -45.66 4.47 157.56 0.997

The calculated thermodynamic parameters are shown in Table 12.

Negative values of Gibbs free energy (ΔG°) and positive values of entropy (ΔS°) at all temperatures indicate that reactions in the adsorption process take place spontaneously. A decrease in the Gibbs free energy (ΔG°) with an increase in temperature also indicates that the spontaneity of the reaction increases.

Positive values of ΔS0 indicate a tendency of greater disorder of the MRM and RMHAp surface systems and malathion solution. In Table 12, we can see that the Gibbs free energy values (ΔG°) for both adsorbents are approximate, and the positive entropy values (ΔS°) at all temperatures, while the positive enthalpy values (ΔH0) for MRM and RMHAp are noticeable, which indicates the endothermic process. In general, the exchange of free energy in the case of physisorption is somewhere between -20 and 0 kJ mol-1, for simultaneous hemisorption and physisorption between -20 and -80 kJ mol-1, and hemisorption less than-80 kJ mol-1. The obtained results indicate that in these cases, hemisorption and physisorption are present at the same time.

Optimization of adsorption conditions

The individual interaction and the impact of various variables in relation to different predictors were tested using the response surface methodology (RSM) as a mathematical function by commercial software design Expert 9. The mutual influence of the input variables was analyzed by analyzing the variances of ANOVA using the quadratic model of the equation shown in Table 13.

Table 13. ANOVA variance analysis for a square response surface model for the removal of malathion from water using the RMHAp adsorbent
Таблица 13. Дисперсионный анализ ANOVA квадратной модели поверхности отклика для удаления малатиона из воды с использованием адсорбента RMHAp
Табела 13. Анализа варијанси ANOVA за квадратни модел једначине методе одзивних површина за уклањање малатиона из воде помоћу адсорбента RMHAp

Source Sum of square df Mean Square F Value p-value
Prob > F
Model 9102.20579 14 650.1575566 8.986135 0.0001 significant
A-dose adsorbent 4873.88213 1 4873.882133 67.36423 < 0.0001
B-t 991.173633 1 991.1736333 13.69948 0.0004
C-pH 3.8988 1 3.8988 0.053887 0.8198
D-T 18.8000333 1 18.80003333 0.259844 0.6182
AB 484 1 484 6.689593 0.0215
AC 0.9604 1 0.9604 0.013274 0.9099
AD 7.0225 1 7.0225 0.097061 0.7600
BC 0.297025 1 0.297025 0.004105 0.9498
BD 0.075625 1 0.075625 0.001045 0.9747
CD 0.783225 1 0.783225 0.010825 0.9186
A^2 756.17519 1 756.1751903 10.45145 0.0060
B^2 37.4530282 1 37.45302815 0.517656 0.4837
C^2 1399.36149 1 1399.361488 19.34124 0.0006
D^2 27.51492 1 27.51492005 0.380297 0.5473
Residual 1012.91668 14 72.35119167
Lack of Fit 1012.90868 10 101.2908683 50645.43 < 0.0001 significant
Pure Error 0.008 4 0.002
Cor Total 10115.1225 28

A graph of the optimal conditions with respect to the input variables for removing malathion from water using RMHAp is shown in Figure 7.

Figure 8 Optimization of the input parameters in relation to the maximum capacity of the adsorbent
Рис. 8
Оптимизация входных параметров в зависимости от максимальной емкости адсорбента
Слика 8
Оптимизација улазних параметара у односу на максимални капацитет адсорбента

Figure 9 3D diagram of the mutual interactions of dependence of significant input variables (adsorbent dose and time)
Рис. 9
Трехмерная диаграмма взаимодействий зависимостей значимых входных переменных (доза и время адсорбента)
Слика 9
3D дијаграм међусобних интеракција зависности значајних улазних променљивих (доза адсорбента и време)

(Figure 8) (Figure 9)

Conclusion

MRM and RMHAP showed excellent malathion removal performance. The results of isothermal, kinetic, and thermodynamic studies suggested simultaneous physisorption and hemisorption between malathion molecules and the surface of MRM and RMHAP adsorbents during the adsorption process. The optimal parameters for the maximum malathion adsorption were: system pH value – 6, adsorbent dose – 100 mg L-1, adsorption time – 180 minutes, and temperature -45°C. Adsorption was spontaneous and endothermic as described by thermodynamic parameters. The Bok-Behnken's design within the response surface method has been successfully used in the optimization of experimental adsorption conditions, the goal of optimization being to determine the optimal adsorption conditions with a smaller number of experiments. Optimization methods are maximally harmonized with the principles of environmental protection thus reducing: the number of experiments, the amount of consumed expensive and environmentally harmful chemicals, and the generation of waste. The errors and the predicted response values, derived from a mathematical model, showed acceptable results and confirmed the favorable effect of the studied factors on malathion adsorption using RMHAP. This paper investigates the sustainable use of biowaste for the treatment of water contaminated with organophosphorus pesticides, whereby the biowaste that burdens the banks of rivers is used to remove water pollutants, thus leading to a double benefit for the environment.

Dodatak

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No.: 213-1/21 -08-03-2021).

References

Bajić, Z.J., Đokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.D., Issa, B.N., & Marinković, A.D. (2013). Equilibrium, Kinetic and Thermodynamic Studies on Removal of Cd(II), Pb(II) and As(V) from Wastewater Using Carp (Cyprinus Carpio) Scales. Dig J Nanomater Biostruct, 8(4), 1581-1590. Retrieved from https://chalcogen.ro/1581_Bajic.pdf on 15 June 2021.
Bajić, Z.J., Pamučar, D.S., Bogdanov, J.Đ., Bučko, M.M., & Veličković, Z.S. (2019). Optimization of arsenite adsorption on hydroxy apatite based adsorbent using the adaptive neuro-fuzzy inference system. Vojnotehnički glasnik, 67(4), 735-752. [Crossref]
Bouchard, M., Gosselin, N.H., Brunet, R.C., Samuel, O., Dumoulin, M., & Carrier, G. (2003). A toxicokinetic model of malathion and its metabolites as a tool to assess human exposure and risk through measurements of urinary biomarkers. Rev Econ Dyn, 73(1), 182-194. [Crossref]
Bouchenafa-Saïb, N., Mekarzia, A., Bouzid, B., Mohammedi, O., Khelifa, A., Benrachedi, K., & Belhaneche, N. (2014). Removal of malathion from polluted water by adsorption onto chemically activated carbons produced from coffee grounds. Desalination and Water Treatment, 52(25-27), 4920-4927. [Crossref]
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013). Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. ScientificWorldJournal, 2013(art.ID:460923). [Crossref]
Budimirović, D., Veličković, Z.S., Đokić, V.R., Milosavljević, M., Markovski, J., Lević, S., & Marinković, A.D. (2017). Efficient As(V) removal by-FeOOH and-FeOOH/-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes. Chem Eng Res Des, 119, 75-86. [Crossref]
Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S., & Guha, A.K. (2010). Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. J Hazard Mater, 174(1-3), 47-53. [Crossref]
Gao, Z., Bandosz, T.J., Zhao, Z., Han, M., & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater, 167(1-3), 357-365. [Crossref]
Hameed, B.H., Salman, J.M., & Ahmad, A.L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater, 163(1), 121-126. [Crossref]
Islam, K.N., Ali, M.E., Bakar, M.Z., Loqman, M.Y., Islam, A., Islam, M.S., Rahman, M.M., & Ullah, M. (2013). A novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technol, 246, 434-440. [Crossref]
Kamga, F.T. (2019). Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl Water Sci, 9. [Crossref]
Karanac, M., Ðolić, M., Veljović, Ð., Rajaković-Ognjanović, V., Veličković, Z., Pavićević, V., & Marinković, A. (2018). The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Manag, 78, 366-378. [Crossref]
Khiri, M.Z.A., Matori, K.A., Zainuddin, N., Abdullah, C.A.C., Alassan, Z.N., Baharuddin, N.F., & Zaid, M.H.M. (2016). The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature. Springerplus, 5(1). [Crossref]
Krzeminska, M., Kuklinski, P., Najorka, J., & Iglikowska, A. (2016). Skeletal Mineralogy Patterns of Antarctic Bryozoa. J Geol, 124(3). [Crossref]
Kuklinski, P., & Iglikowska, A. (2009). Mineralogy of Arctic bryozoan skeletons in a global context. Facies, 55, 489-500. [Crossref]
Ohno, K., Minami, T., Matsui, Y., & Magara, Y. (2008). Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: Desorption and oxon formation. Water Res, 42(6-7), 1753-1759. [Crossref]
Pantić, K., Bajić, Z.J., Veličković, Z.S., Đokić, V., Rusmirović, J., Marinković, A., & Perić-Grujić, A. (2019). Adsorption performances of branched aminated waste polyacrylonitrile fibers: Experimental versus modelling study. Desalination and Water Treatment, 171, 223-249. [Crossref]
Perendija, J., Veličković, Z.S., Cvijetić, I., Lević, S., Marinković, A., Milošević, M., & Onjia, A. (2021). Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. Process Saf Environ Prot, 147, 609-625. [Crossref]
Ramajo, L., Rodriguez-Navarro, A.B., Duarte, C.M., Lardies, M.A., & Lagos, N.A. (2015). Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Marine and Freshwater Research, 66(12), 1147-1157. [Crossref]
Salma, K., Berzina-Cimdina, L., & Borodajenko, N. (2010). Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Processing and Application of Ceramics, 4(1), 45-51. [Crossref]
Singh, V.K., Singh, R.S., Tiwari, P.N., Singh, J.K., Gode, F., & Sharma, Y.C. (2010). Removal of Malathion from Aqueous Solutions and Waste Water Using Fly Ash. J Water Resour Prot, 2(4), 322-330. [Crossref]
Skwarek, E., Janusz, W., & Sternik, D. (2014). Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry, 299, 2027-2036. [Crossref]
Stevanović, M., Bajić, Z.J., Veličković, Z.S., Karkalić, R., Pecić, L., Otrisal, P., & Marinković, A. (2020). Adsorption performances and antimicrobial activity of the nanosilver modified montmorillonite clay. Desalination and Water Treatment, 187, 345-369. [Crossref]
Taleb, K., Markovski, J., Milosavljević, M., Marinović-Cincović, M., Rusmirović, J., Ristić, M., & Marinković, A. (2015). Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: Material performance. Chemical Engineering Journal, 279, 66-78. [Crossref]
Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V., & Marinković, A. (2019). Arsenic removal by magnetite-loaded aminomodified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian Journal of Chemistry, 12(8), 4675-4693. [Crossref]
Wei, D., Zhang, H., Cai, L., Guo, J., Wang, Y., Ji, L., & Song, W. (2018). Calcined Mussel Shell Powder (CMSP) via Modification with Surfactants: Application for Antistatic Oil-Removal. Materials (Basel), 11(8). [Crossref]
Reference
Bajić, Z.J., Đokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.D., Issa, B.N., Marinković, A.D. (2013) Equilibrium, Kinetic and Thermodynamic Studies on Removal of Cd(II), Pb(II) and As(V) from Wastewater Using Carp (Cyprinus Carpio) Scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590, https://chalcogen.ro/1581_Bajic.pdf [Accessed: 15 June 2021]
Bajić, Z.J., Pamučar, D.S., Bogdanov, J.Đ., Bučko, M.M., Veličković, Z.S. (2019) Optimization of arsenite adsorption on hydroxy apatite based adsorbent using the adaptive neuro-fuzzy inference system. Vojnotehnički glasnik, vol. 67, br. 4, str. 735-752
Bouchard, M., Gosselin, N.H., Brunet, R.C., Samuel, O., Dumoulin, M-J., Carrier, G. (2003) A toxicokinetic model of malathion and its metabolites as a tool to assess human exposure and risk through measurements of urinary biomarkers. Toxicological Sciences, 73(1): 182-194
Bouchenafa-Saïb, N., Mekarzia, A., Bouzid, B., Mohammedi, O., Khelifa, A., Benrachedi, K., Belhaneche, N. (2014) Removal of malathion from polluted water by adsorption onto chemically activated carbons produced from coffee grounds. Desalination and Water Treatment, 52(25-27): 4920-4927
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., Trongyong, S. (2013) Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013(art.ID:460923)
Budimirović, D., Veličković, Z.S., Đokić, V.R., Milosavljević, M., Markovski, J., Lević, S., Marinković, A.D. (2017) Efficient As(V) removal by-FeOOH and-FeOOH/-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes. Chemical Engineering Research and Design, 119, pp.75-86
Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S., Guha, A.K. (2010) Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1-3), pp.47-53
Gao, Z., Bandosz, T.J., Zhao, Z., Han, M., Qiu, J. (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Journal of Hazardous Materials, 167(1-3), pp.357-365
Hameed, B.H., Salman, J.M., Ahmad, A.L. (2009) Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163(1): 121-126
Islam, K.N., Ali, M.E., Bakar, M.Z., Loqman, M.Y., Islam, A., Islam, M.S., Rahman, M.M., Ullah, M. (2013) A novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technology, 246, pp.434-440
Kamga, F.T. (2019) Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Applied Water Science, 9(art.number:1)
Karanac, M., Ðolić, M., Veljović, Ð., Rajaković-Ognjanović, V., Veličković, Z., Pavićević, V., Marinković, A. (2018) The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Management, 78, pp.366-378
Khiri, M.Z.A., Matori, K.A., Zainuddin, N., Abdullah, C.A.C., Alassan, Z.N., Baharuddin, N.F., Zaid, M.H.M. (2016) The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature. SpringerPlus, 5(1): 1206
Krzeminska, M., Kuklinski, P., Najorka, J., Iglikowska, A. (2016) Skeletal Mineralogy Patterns of Antarctic Bryozoa. Journal of Geology, 124(3)
Kuklinski, P., Iglikowska, A. (2009) Mineralogy of Arctic bryozoan skeletons in a global context. Facies, 55, pp.489-500
Ohno, K., Minami, T., Matsui, Y., Magara, Y. (2008) Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: Desorption and oxon formation. Water Research, 42(6-7), pp.1753-1759
Pantić, K., Bajić, Z.J., Veličković, Z.S., Đokić, V., Rusmirović, J., Marinković, A., Perić-Grujić, A. (2019) Adsorption performances of branched aminated waste polyacrylonitrile fibers: Experimental versus modelling study. Desalination and Water Treatment, 171, pp.223-249
Perendija, J., Veličković, Z.S., Cvijetić, I., Lević, S., Marinković, A., Milošević, M., Onjia, A. (2021) Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. Process Safety and Environmental Protection, 147, pp.609-625
Ramajo, L., Rodriguez-Navarro, A.B., Duarte, C.M., Lardies, M.A., Lagos, N.A. (2015) Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Marine and Freshwater Research, 66(12), pp.1147-1157
Salma, K., Berzina-Cimdina, L., Borodajenko, N. (2010) Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Processing and Application of Ceramics, vol. 4, br. 1, str. 45-51
Singh, V.K., Singh, R.S., Tiwari, P.N., Singh, J.K., Gode, F., Sharma, Y.C. (2010) Removal of Malathion from Aqueous Solutions and Waste Water Using Fly Ash. Journal of Water Resource and Protection, 2(4), pp.322-330
Skwarek, E., Janusz, W., Sternik, D. (2014) Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry,, 299, pp.2027-2036
Stevanović, M., Bajić, Z.J., Veličković, Z.S., Karkalić, R., Pecić, Lj., Otrisal, P., Marinković, A. (2020) Adsorption performances and antimicrobial activity of the nanosilver modified montmorillonite clay. Desalination and Water Treatment, 187, pp.345-369
Taleb, K., Markovski, J., Milosavljević, M., Marinović-Cincović, M., Rusmirović, J., Ristić, M., Marinković, A. (2015) Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: Material performance. Chemical Engineering Journal,, 279, pp.66-78
Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V., Marinković, A. (2019) Arsenic removal by magnetite-loaded aminomodified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian Journal of Chemistry, 12(8), pp.4675-4693
Wei, D., Zhang, H., Cai, L., Guo, J., Wang, Y., Ji, L., Song, W. (2018) Calcined Mussel Shell Powder (CMSP) via Modification with Surfactants: Application for Antistatic Oil-Removal. Materials, 11(8), 1410
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/vojtehg69-32844
primljen: 21.06.2021.
revidiran: 28.09.2021.
prihvaćen: 30.09.2021.
objavljen u SCIndeksu: 06.11.2021.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0