- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:3
- preuzimanja u poslednjih 30 dana:2
|
|
2014, vol. 19, br. 38, str. 105-114
|
Sistem za praćenje mikroklimatskih uslova u plastenicima
System for monitoring microclimate conditions in greenhouse
aUniverzitet u Kragujevcu, Agronomski fakultet, Čačak, Srbija bUniverzitet u Kragujevcu, Tehnički fakultet, Čačak, Srbija
Projekat: Razvoj i modelovanje energetski efikasnih, adaptabilnih, višeprocesorskih i višesenzorskih elektronskih sistema male snage (MPNTR - 32043)
Ključne reči: praćenje mikroklimatskih parametara; plastenik; pametni pretvarači; sistemi male potrošnje energije
Sažetak
Praćenje mikroklimatskih parametara u različitim životnim okruženjima može da pruži veliki doprinos u mnogim oblastima ljudskih aktivnosti i proizvodnih procesa. Jedan od tih je proizvodnja povrća u plastenicima gde merenje mikroklimatskih parametara može uticati na donošenje odluka o preduzimanju odgovarajućih akcija i zaštiti useva. Takođe jako je važno zadržati optimalne uslove u plasteniku kako bi se pospešili procesi transpiracije, mineralne ishrane biljaka i sprečavanju pojave raznih fizioloških oštećenja prouzrokovanih deficitom nekih specifičnih hraniva. Sistemi za praćenje uslova okoline imaju široku primenu poslednjih godina zahvaljujući razvoju savremenih računarskih tehnologija. U ovom radu predstavljen je model sistema za praćenje zasnovan na konceptu pametnih pretvarača. Pojedinačni moduli sistema su bazirani na MSP430 mikrokontrolerima male snage. Moduli koriste bežični vid komunikacije kako bi razmenjivali podatke u okviru sistema koji je strukturisan prema konceptu pametnih pretvarača. Korisnička aplikacija iz eksterne mreže može pristupiti sistemu koristeći HTTP protokol pri čemu web server može biti pokrenut na računaru koji je pridružen sistemu ili može postojati ugrađeni web server na nekom do mikrokontrolerski zasnovanih uređaja.
Abstract
Monitoring microclimate parameters in different kind of environments has significant contribution to many areas of human activity and production processes. One of them is vegetable production in greenhouses where measurement of its microclimate parameters may influence the decision on taking appropriate action and protect crops. It is also important to preserve optimal condition in greenhouses to facilitate the process of transpiration, plant mineral nutrition and prevent of a variety physiological damage caused by a deficit of some specific nutrients. Systems for monitoring have wide application in the last years thanks to development of modern computer technology. In this paper model of the monitoring system based on smart transducer concept was introduced. Within the system components are based on MSP430 ultra low power micro controllers. They are using wireless communication to exchange data within the system that was structured according to smart transducer concept. User applications from the network could access to system interface using HTTP protocol where web server could be running on the computer or it could be an embedded web server running on micro controller based device.
|
|
|
Reference
|
|
*** Sensor SHT 15: Datasheet SHT1x. http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
|
|
*** Mbed platform: Mbed LPC1768. http://developer.mbed.org/platforms/mbed- LPC1768
|
|
*** MSP 430 Datasheet: Ultra-low-power MSP430 micro controllers. http://pdf1.alldatasheet.com/datasheet-pdf/view/465689/TI1/MSP430.html
|
|
*** MSP 430: CCRF development board. https://www.olimex.com/Products/MSP430/Starter/MSP430-CCRF/resources/MSP430-CCRF.pdf
|
|
*** IEEE standard for a smart transducer interface for sensors and actuators: Common functions, communication protocols, and transducer electronic data sheet (TEDS) formats. IEEE Std. 1451.0-2007
|
|
Barrero, F., Guevara, J.A., Vargas, E., Toral, S., Vargas, M. (2014) Networked transducers in intelligent transportation systems based on the IEEE 1451 standard. Computer Standards and Interfaces, 36(2): 300-311
|
|
Chaudhary, D.D., Nayse, S.P., Waghmare, L.M. (2011) Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless and Mobile Networks, 3(1): 140-149
|
|
Fernandes, M.A., Matos, S.G., Peres, E., Cunha, C.R., López, J.A., Ferreira, P.J.S.G., Reis, M.J.C.S., Morais, R. (2013) A framework for wireless sensor networks management for precision viticulture and agriculture based on IEEE 1451 standard. Computers and Electronics in Agriculture, 95: 19-30
|
|
Li, X., Cheng, X., Yan, K., Gong, P. (2010) A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network. Sensors, 10(10): 8963-8980
|
|
Park, D., Park, J. (2011) Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention. Sensors, 11(12): 3640-3651
|
|
Song, E., Lee, K. (2007) Smart Transducer Web Services Based on the IEEE 1451.0 Standard. u: IEEE Instrumentation & Measurement Technology Conference IMTC 2007
|
|
van den Bulck, N., Coomans, M., Wittemans, L., Hanssens, J., Steppe, K. (2013) Monitoring and energetic performance analysis of an innovative ventilation concept in a Belgian greenhouse. Energy and Buildings, 57: 51-57
|
|
|
|