- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:19
- preuzimanja u poslednjih 30 dana:10
|
|
2022, vol. 26, br. 2, str. 75-78
|
Primena procene životnog ciklusa u sektoru ambalaže za polimerne i biopolimerne materijale - pregled
Application of life cycle assessment in the packaging sector for the environmental assessment of polymer and biopolymer based materials: A review
Projekat: Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Novom Sadu, Tehnološki fakultet) (MPNTR - 451-03-68/2020-14/200134)
Sažetak
Među mnogim važnim zahtevima koje moraju ispunjavati ambalažni materijali, ekološka prihvatljivost je svojstvo koje je postalo neophodno za svaki materijal koji treba da bude konkurentan na tržištu. Analiza životnog ciklusa (LCA) je analitički instrument koji obezbeđuje okvir za analizu uticaja proizvoda i usluga na životnu sredinu, odnosno pruža razumevanje i mogućnost poređenja različitih proizvoda. LCA proučava korišćenje resursa i posledice emisija zagađujućih materija po životnu sredinu tokom celokupnog životnog veka proizvoda od eksploatacije sirovina, preko proizvodnje, upotrebe i postupanja na kraju životnog ciklusa, odnosno recikliranja i konačnog odlaganja. Ovaj rad se bavi prikazom rezultata LCA analiza različitih komercijalnih polimernih ambalažnih materijala, kao i rezultata LCA analiza biopolimernih materijala. Iako se LCA suočava sa problemom heterogenosti podataka, jer se neke studije fokusiraju na pojedinačne segmente, a neke se odnose na sve aspekte procesa, kao i sa problemom interpretacije heterogenih rezultata, jer izlazne parametre proizvoljno bira istraživač, ipak se može zaključiti da dostupne LCA studije i ekološke procene podržavaju dalji razvoj biopolimernih polimera. Kada se uporede biopolimerni materijali sa komercijalnim sintetičkim polimerima, oni imaju prednosti - manju potrošnju fosilnih goriva i nižu stopu emisije gasova staklene bašte iz celog životnog ciklusa.
Abstract
Among many important requirements for packaging materials, environmental friendliness is a property that has become necessary for any material that needs to be competitive in the market. Life Cycle Analysis (LCA) is an analytical instrument that provides a framework for analyzing the impact of products and services on the environment, i.e. provides an understanding and the possibility of comparing different products. LCA studies the use of resources and the consequent emissions of pollutants on the environment during the entire life of a product from raw materials exploitation, through production, use and treatment at the end of the life cycle - recycling and final disposal. This paper will provide an overview of the LCA results of various commercial polymer packaging materials, as well as the results of LCAs of biopolymer materials. Although LCA faces the problem of data heterogeneity, since some studies focused on individual segments of the analysis, while some related to all aspects of the process, as well with the problem of interpreting heterogeneous results, because the output parameters were arbitrarily selected by the researcher, still it could be concluded that the available LCA studies and environmental assessments support further development of biobased polymers. When comparing biopolymer materials with commercial synthetic polymers, they have advantages - lower consumption of fossil fuels and lower emission rate of greenhouse gases from the whole life cycle.
|
|
|
Reference
|
|
Azapagic, A., Emsley, A., Hamerton, L. (2003) Polymers, the environment and sustainable development. u: Hamerton I. [ur.] Polymers, the environment and sustainable development, Hoboken, New Jersey: John Wiley & Sons, Inc, 125-154; 1st edition
|
|
Belboom, S., Léonard, A. (2016) Does biobased polymer achieve better environmental impacts than fossil polymer?: Comparison of fossil HDPE and biobased HDPE produced from sugar beet and wheat. Biomass and Bioenergy, 85: 159-167
|
|
Bohlmann, M. (2004) Biodegradable packaging life-cycle assessment. Environmental Progress, 23(4): 342-346
|
|
Flanigan, L., Frischknecht, R., Montalbo, T. (2013) An analysis of life cycle assessment in packaging for food & beverage applications. u: United Nations Environment Programme and SETAC
|
|
Gironi, F., Piemonte, V. (2011) Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy, 30(3): 459-468
|
|
Gomes, T.S., Visconte, L.L.Y., Pacheco, E.B.A.V. (2019) Life cycle assessment of polyethylene terephthalate packaging: An overview. Journal of Polymers and the Environment, 27(3): 533-548
|
|
Grigale, Z., Simanovska, J., Kalnings, M., Dzene, A., Tupureina, V. (2010) Biodegradable packaging from life cycle perspective. Scientific Journal of Riga Technical University Material -Science and Applied Chemistry, 21: 90-97
|
|
Hottle, T.A., Bilec, M.M., Landis, A.E. (2013) Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9): 1898-1907
|
|
Ingrao, C., Gigli, M., Siracusa, V. (2017) An attributional life cycle assessment application experience to highlight environmental hotspots in the production of foamy polylactic acid trays for fresh-food packaging usage. Journal of Cleaner Production, 150: 93-103
|
|
Khoo, H.H., Tan, R.B.H. (2010) Environmental impacts of conventional plastic and bio-based carrier bags: Part 2: End-of-life options. International Journal of Life Cycle Assessment, 15(4): 338-345
|
|
Matthews, C., Moran, F., Jaiswal, A.K. (2021) A review on European Union's strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production, 283: 125263-125263
|
|
Morão, A., de Bie, F. (2019) Life cycle impact assessment of polylactic acid (PLA) produced from sugarcane in Thailand. Journal of Polymers and the Environment, 27(11): 2523-2539
|
|
Moretti, C., Hamelin, L., Jakobsen, L.G., Junginger, M.H., Steingrimsdottir, M.M., Høibye, L., Shen, L. (2021) Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resources, Conservation and Recycling, 169: 105508-105508
|
|
Nikolić, S., Kiss, F., Mladenović, V., Bukurov, M., Stanković, J. (2015) Corn-based polylactide vs. PET bottles-cradle-togate LCA and implications. Materiale Plastice, 52(4): 517-521
|
|
Patel, M., Bastioli, C., Marini, L., Würdinger, E. (2003) Environmental assessment of bio-based polymers and natural fibres. u: Steinbüchel A. [ur.] Biopolymers Online
|
|
Ramesh, P., Vinodh, S. (2020) State of art review on life cycle assessment of polymers. International Journal of Sustainable Engineering, 13(6): 411-422
|
|
Tamburini, E., Costa, S., Summa, D., Battistella, L., Fano, E.A., Castaldelli, G. (2021) Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles: What is the most sustainable choice for drinking water?: A life-cycle (LCA) analysis. Environmental Research, 196: 110974-110974
|
|
Wolfson, A., Dominguez-Ramos, A., Irabien, A. (2019) From goods to services: The life cycle assessment perspective. Journal of Service Science Research, 11(1): 17-45
|
|
Xie, M., Li, L., Qiao, Q., Sun, Q., Sun, T. (2011) A comparative study on milk packaging using life cycle assessment: From PA-PE-Al laminate and polyethylene in China. Journal of Cleaner Production, 19(17-18): 2100-2106
|
|
Yates, M.R., Barlow, C.Y. (2013) Life cycle assessments of biodegradable, commercial biopolymers: A critical review. Resources, Conversation and Recycling, 78: 54-66
|
|
|
|