- citati u SCIndeksu: [2]
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:4
- preuzimanja u poslednjih 30 dana:3
|
|
2013, vol. 41, br. 3, str. 256-263
|
O osobinama konkavnih antiprizmi druge vrste
On the properties of the concave antiprisms of second sort
aUniverzitet u Beogradu, Građevinski fakultet, Katedra za matematiku, fiziku, nacrtnu geometriju i društvene nauke bUniverzitet u Beogradu, Mašinski fakultet, Katedra za teoriju mehanizama i mašina
e-adresa: marijao@grf.bg.ac.rs
Projekat: Razvoj novih informaciono-komunikacionih tehnologija, korišćenjem naprednih matematičkih metoda, sa primenama u medicini, telekomunikacijama, energetici, zaštititi nacionalne baštine i obrazovanju (MPNTR - 44006)
Sažetak
Rad se bavi ispitivanjem geometrijskih, statičkih i dinamičkih osobina jedne poliedarske strukture nastale nabiranjem dvorednog segmenta mreže jednakostraničnih trouglova. Osnove ovih konkavnih poliedara su pravilni, identični poligoni u paralelnim ravnima, povezani nizom naizmeničnih trouglova, kao i u slučaju konveksnih antiprizmi. Postoje dve varijante savijanja ovakve mreže, pa samim tim i dva tipa konkavnih antiprizmi druge vrste (KA II) za svaku posmatranu osnovu od n=5, n=∞. U radu su razmotreni načini dobijanja tačnog položaja temena i drugih linearnih parametara ovih poliedara, uz primenu algoritma za njihovo matematičko izračunavanje. Strukturalna analiza jednog predstavnika ovih poliedara data je korišćenjem aplikacija programa SolidWorks, kako bi se ispitala mogućnost primene ovih oblika u inženjerstvu.
Abstract
The paper examines geometrical, static and dynamic properties of the polyhedral structures obtained by folding and creasing the two-rowed segment of equilateral triangular net. Bases of these concave polyhedra are regular, identical polygons in parallel planes, connected by the alternating series of triangles, as in the case of convex antiprisms. There are two ways of folding such a net, and therefore the two types of concave antiprisms of second sort. The paper discusses the methods of obtaining the accurate position of the vertices and other linear parameters of these polyhedra, with the use of mathematical algorithm. Structural analysis of a representative of these polyhedra is presented using the SolidWorks program applications.
|
|
|
Reference
|
|
Barker, R.J.P., Guest, S.D. (2000) Inflatable Triangulated Cylinders. u: IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, Springer, 17-26
|
|
Chironis, N.P. (1965) Mechanisms, linkages and mechanical controls. New York: McGraw-Hill
|
|
Guest, S.D., Pellegrino, S. (1994) The Folding of Triangulated Cylinders, Part I: Geometric Considerations. Journal of Applied Mechanics, 61(4): 773
|
|
Huybers, P. (2001) Prism based structural forms. Engineering Structures, 23(1): 12-21
|
|
Huybers, P. (2009) Polyhedroids: An anthology of structural morphology. Singapore: World scientific publishing Co. Pte. Ltd, str. 49-62
|
|
Knapp, R.H. (1977) Pressure and buckling resisting undulated polyhedral shell structure: US Patent No 4058945. Nov. 22
|
|
Miura, K. (1969) Proposition of Pseudo-Cylindrical Concave Polyhedral Shells. Tokyo: University of Tokyo - Institute of Space and Aeronautical Science
|
|
Nikolić, D., Štulić, R., Šiđanin, P. (2012) Influence of geometrical genesis of deployable structures elements upon preservation of specific angles. u: 3rd Scientific Conference moNGeometrija 2012, Novi Sad, Proceedings, 625-635
|
|
Obradovic, M., Misic, S., Popkonstantinovic, B. (2012) The concave antiprisms of second sort with regular polygonal bases. u: Scientific conference Mongeometrija 2012 (3rd), Novi Sad, Proceedings, str. 133-143
|
|
Obradović, M., Mišić, S., Popkonstantinović, B., Petrović, M. (2011) Possibilities of deltahedral concave cupola form application in architecture. Buletinul Institutului Politehnic din Iaşi, Publicat de Universitatea Tehnicâ Gheorghe Asachi din Iaşi Tomul, LVII, (LXI), Fasc. 3, Romania, 123-140
|
2
|
Obradović, M., Mišić, S. (2008) Concave regular faced cupolae of second sort. u: 13th ICGG, International Conference on Geometry and Graphic, Dresden, Germany, July, Proceedings, on CD
|
|
Tachi, T. (2010) Geometric considerations for the design of rigid origami structures. u: International Association for Shell and Spatial Structures (IASS) Symposium, 2010, Shanghai, Proceedings
|
|
Wenninger, M.J. (1989) Polyhedron models. Cambridge, England: University Press
|
|
|
|