- citati u SCIndeksu: [1]
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:7
- preuzimanja u poslednjih 30 dana:6
|
|
2017, vol. 67, br. 1, str. 45-53
|
Polimerni kompozit/metal cilindri opterećeni iznutra - izrada, ispitivanje i provera kvaliteta uprošćenim postupkom
Internally stressed polymeric composite/metal cylinders: Manufacturing, testing and quality verifying by simplified procedure
Sažetak
U ovom radu prikazani su detalji izrade višeslojnih cilindara koji se sastoje od metalnog lajnera (urađenih standardnim mašinskim postupcima) i polimernog kompozitnog materijala (urađenog tehnologijom mokrog namotavanja). Za izradu višeslojnih cilindara korišćena su tri tipa čeličnih lajnera (svaki lajner je imao tri različite debljine zida). Staklena vlakna impregnisana poliestarskom smolom su namotana sa spoljne strane pomenutih devet lajnera i ovako urađene višeslojne cevi su bile izložene dejstvu unutrašnjeg hidrauličkog pritiska uz merenje deformacija u radijalnom pravcu. Prikazane su dve grupe rezultata, dobijenih za vreme hidrauličkih ispitivanja višeslojnih cevi : jednu grupu predstavljaju elastične karakteristike tj. osobine ispitivanih cevi na granici elastičnosti i drugu grupu predstavljaju konačne karakteristike tj. osobine ispitivanih cevi u trenutku prskanja. Izvršen je proračun pritiska na granici elastičnosti uprošćenim postupkom. Poređenjem vrednosti eksperimentalno određenog pritiska na granici elastičnosti i izračunatog pritiska na granici elastičnosti, može da se zaključi da postoji dobro slaganje između ova dva podatka. Vrednosti eksperimentalno određenih radijalnih deformacija na spoljnoj površini višeslojnih cevi na granici elastičnosti i vrednosti ovog parametra, dobijenih proračunom uprošćenog modela su, takođe, značajno bliske. Na osnovu eksperimentalnih podataka, utvrđen je uticaj prelaza sa manjeg spoljneg prečnika lajnera na veći spoljni prečnik lajnera i, takođe, uticaj debljine zida lajnera na karakteristike višeslojnih cevi, koje su bile izložene dejstvu unutrašnjeg hidrauličkog pritiska. A na osnovu uvedenog parametra koji predstavlja odnos hidrauličkog pritiska prskanja i mase, zaključeno je da polimerni kompozitni materijal ima pozitivan uticaj na hidraulički pritisak prskanja (povećanje) i masu (smanjenje) navedenih višeslojnih cevi.
Abstract
In this paper the details about manufacturing of multilayer cylinders consisting of metal liner (obtained by standard machining procedures) and polymeric composite material (produced by filament winding technology) are presented. For multilayer cylinders manufacturing three types of steel liner (each liner type has three different wall thicknesses) are used. Glass fibers impregnated with polyester resin were wound at the outer surface of the mentioned nine liners and so the manufactured multilayer tubes were exposed to the action of internal hydraulic pressure with measurement of deformations in radial direction. Two groups of the results, obtained during hydraulic testing of multilayer cylinders, were presented: one group represents elastic characteristics, i.e. the properties of the examined tubes at the elastic limit, and another group represents the final properties, i.e. the characteristics of the tested tubes at the moment of burst. Calculation of the pressure at the elastic limit, by a simplified procedure, was done. By comparing the value of experimentally tested pressure at the elastic limit and the value of calculated pressure at the elastic limit, it was concluded that there is a good agreement between these two data. Values of experimentally tested radial deformations at the elastic limit of external surface of multilayer tubes and values of this parameter obtained by calculation of simplified model, are, also, meaningfully approximate. Based on the experimental data, an influence of a pathway from the lower outside liner diameter to higher outside liner diameter was established, and, also, an influence of liner wall thickness on characteristics of multilayer tubes, which were exposed to the action of internal hydraulic pressure. Based on the introduced parameter hydraulic burst pressure/mass ratio, it was concluded that a higher presence of polymer composite material has positive influence on hydraulic burst pressure (increasing) and mass (decreasing) of the mentioned multilayer tubes.
|
|
|
Reference
|
|
*** High strength piping: composite/steel pipe designed for extended service in hostile conditions. http://www.offshore-mag.com/articles/print/volume-61/issue-3/news/high-strength-piping-composite-steel-pipe-designed-for-extended-service-in-hostile-conditions.html
|
|
Bambach, M.R. (2010) Axial capacity and crushing of thin-walled metal, fibre-epoxy and composite metal-fibre tubes. Thin-Walled Structures, 48(6): 440-452
|
|
Choqueuse, D., Bigourdan, B., Deuff, A., Quétel, L. (2009) Hydrostatic compression behaviour of steel-composite hybrid tubes. u: Conference Paper ICCM17 - The 17th International Conference on Composite Materials, July 2009, Edinburgh (UK), July; 17
|
3
|
Groover, M.P. (2010) Fundamentals of Modern Manufacturing, Materials, Processes and Systems. Hoboken: John Wiley and Sons Inc, ISBN 978-0470-467008
|
|
Huang, M. Y., Tai, Y., Hu, H. T. (2012) Numerical Study on Hybrid Tubes Subjected to Static and Dynamic Loading. Applied Composite Materials, 19(1): 1-19
|
5
|
Kelly, A. (1989) CONCISE encyclopedia of composite materials. Oxford: Pergamon Press
|
1
|
Radulović, J., Čitaković, S. (2016) Mehaničke karakteristike spojeva između staklenim vlaknima ojačanih kompozitnih cevi i čeličnog cilindra ostvarenih pomoću različitih spojenih elemenata. Scientific Technical Review, vol. 66, br. 2, str. 28-35
|
3
|
Radulović, J. (2013) Thin wall and thick wall filament wound polymeric composite tubes: Mechanical characteristics caused by internal hydraulic pressure. Scientific Technical Review, vol. 63, br. 1, str. 63-69
|
3
|
Radulović, J. (2011) Filament wound composite plastic tubes: Relationship between winding structures and their hydraulic and mechanical properties. Scientific Technical Review, vol. 61, br. 3-4, str. 73-77
|
1
|
Rosato, D.V. (2004) Reinforced Plastics Handbook. Oxford: Elsevier Advanced Technology Ltd, ISBN 1 8561 74506; 3Rd ed
|
|
Sabu, T., Kuruvilla, J., Sant, K.M., Koichi, G., Meyyarappallil, S.S., ur. (2012) Polymer composites. Wiley-VCH Verlag GmbH & Co. KGaA, Volume 1, First Edition
|
|
Tzeng, J.T. (1999) Dynamic Fracture of Composite Gun Tubes. Army Research Laboratory-TR-1869-Weapons and Materials Research Directorate, January
|
|
|
|